
Introduction to computer

science in Python

Fall 2021-22

Department of Software and Information

Systems Engineering

Ben-Gurion University of the Negev

Topic 13: Image representation and

processing

2

Signal processing

• In the physical world, any quantity measurable through

time or over space can be taken as a signal

• Signals are or electrical representations of time-varying

or spatial-varying physical quantities

• Signal processing: applying mathematical techniques for

the extraction, transformation and interpretation of

signals, in either discrete (digital) or continuous (analog)

time

• Example signals: radio, telephone, radar, sound, images,

video, sensor data

3

Digital images

• Digital image is a numeric representation of a

two-dimensional image

• Examples: photos, microscopic, medical,

astronomical

*Help me find a more

updated visualization!

Charge Coupled Device (CCD)
Transforming light (photons) to electrical voltage

https://www.nobelprize.org/prizes/physics/2009/prize-announcement/

Popular science (Hebrew): https://davidson.weizmann.ac.il/online/sciencehistory/את-ששינה-החיישן- התמונה

https://www.nobelprize.org/prizes/physics/2009/prize-announcement/
https://davidson.weizmann.ac.il/online/sciencehistory/החיישן-ששינה-את-התמונה

Image representation and processing

• Digital image representation

• Generating synthetic images

• Basics of image processing

• Noise, and local noise reductions

• Image segmentation

Basic model of a digital image
• Pixel: each element M[x, y] of the image

Resolution

Source: wikipedia

• Resolution is the capability of the sensor to observe or measure

the smallest object clearly with distinct boundaries

• Resolution depends on the physical size of a pixel

Higher resolution = more pixels per area = lower pixel size

2D, 2D + time (video), 3D, color

• A 2D image is encoded as a n-by-m matrix M

• Video – a 3rd "time“ dimension

• 3D image

• Color (e.g., RGB)

Gray scale images

• We discuss gray scale images only (for simplicity)

• Real numbers expressing gray levels have to be

discretized

• A good quality photograph (human visual inspection)

has 256 gray-level values (8 bits) per pixel

• The value 0 represents black, 255 represents white

• In some applications (e.g., medical imaging) 4096

gray levels (12 bits) are used

• Number of bits per pixel.

• A human observer sees at most a few hundreds shades of gray

• Higher bit depths images: typically for automated analysis by a

computer

Image from:

http://micro.magnet.fsu.edu/

Bit Depth

http://micro.magnet.fsu.edu/primer/digitalimaging/digitalimagebasics.html

Image Quantization

Number of bits per pixel

24 bit RGB 16 colors

Note that both images have the same pixel & spatial resolution

• 8 bits per pixel (28=256 gray levels): 0 = black, 255 = white

38, 26, 21, 36, 19, 28, 33, 44, 31, 112,

77, 83, 34, 168, 159, 48, 50, 14, 55, 211,

112, 137, 34, 101, 129, 62, 54, 40, 21, 86,

41, 46, 35, 19, 35, 52, 18, 57, 39, 123,

38, 16, 38, 67, 45, 21, 29, 59, 10, 130,

45, 43, 46, 51, 44, 39, 53, 31, 24, 64,

47, 30, 54, 45, 40, 46, 23, 26, 58, 40,

71, 57, 66, 63, 70, 84, 65, 62, 91, 49,

72, 55, 43, 57, 90, 111, 92, 73, 74, 56,

47, 45, 36, 78, 114, 113, 81, 54, 57, 44

Gray scale image

BW / Grayscale / RGB

• Black & white / gray-level / RGB

256 gray level image

(8 bpp)

"true color" image

(8+8+8 = 24 bpp)

Images from: http://www.csse.uwa.edu.au/~wongt/matlab.html

Black & white

(1 bpp)

Video tutorial on colors here: https://www.youtube.com/watch?v=syJo37AKaro

https://www.youtube.com/watch?v=syJo37AKaro

An image

Our implementation: the class Matrix

• Class Matrix, implemented as a list of lists:

The class Matrix
• Additional methods (we will skip most of these today):

 copy

 Arithmetical operations, e.g., mat1 + mat2

 __getitem__ : receives a tuple (i,j)

 __setitem__ : receives a tuple (i,j) and val

i and j can be both integers or both slices

 display: shows the image represented by a matrix, uses the

library matplotlib (remember graph visualization?)

 save and load: enable storing and reading images from files

class Matrix - item access and assignment

>>> m = Matrix(10, 10) # 10x10 matrix of zeros

>>> m[4,5] # same as m.__getitem__((4,5))

0

>>> m[4,5] = 45 # same as m.__setitem__((4,5),45)

>>> m[4,5]

45

Note: the code file contains an additional feature: accessing and

assignment of a whole slice.

• >>> m[3:5, 4:8] # here i and j are both slices

<Matrix [[0 , 0, 0, 0], [0, 45, 0, 0]] >

Loading, saving and displaying an image

A few issues to discuss regarding

image representation

• “Translating” our custom .bitmap format to
standard image formats in next (hidden) slide
(which I’ll be skipping today)

• Any suggestions on how to improve the inner
representation of an image?

• numpy arrays (intro to DS)

• Of course there are existing Python libraries
with image (and image processing)
functionalities, e.g., https://scikit-image.org/

https://scikit-image.org/

Generating simple synthetic images

Drawing a black square

Horizontal lines

Functions as arguments

Try generating synthetic images yourself!

Digital Image Processing

Digital image processing

Image processing is any form of signal processing for which

the input is an image, the output may be either an image or a

set of characteristics or parameters related to the image

Source: Wikipedia

• Common problems:

• Noise reduction (denoising) - removing noise from an image.

• Segmentation - partitioning a digital image into segments (e.g., identify the

boundaries of cells in a multi-cell image)

• Tracking - relate objects in subsequent frames of a film

• Edge detection – detecting discontinuities in the image

• Registration - transforming different images into one coordinate system (e.g.,

minor shifts in the camera position in subsequent frames

• Color correction.

• Typical applications:

• Machine vision

• Medical / biological image analysis

• Face detection

• Object recognition

• Augmented reality

• …

Digital image processing

Blur

An original image (left) and a blurred version thereof (right). Taken from

Wikipedia.

• Blur and noise are two major effects hampering image accuracy

• Blur is intrinsic to image acquisition. For example, out of focus

due to camera motion or due to the optics

• Take a signal processing course (probably not in ISE) to

understand more...

Noise and denoising

• The observed value at pixel x, y, M(x, y), equals the sum

of the true value T(x, y) plus noise N(x, y)

M(x, y) = T(x, y) + N(x, y)

• Denoising algorithms: given the observed image M,

produce a new image, ෠𝑇, which should be close to the

original image T

• This goal is not well defined, and can be solved only

with putting constraints on the image and on the noise

Assumptions on the images

• We assume the image is piecewise smooth:

most of the image's area consists of large,

smooth regions where light intensity varies

continuously – if x1, y1 and x2, y2 are

neighbors, then M[x1,y1] and M[x2,y2] attain

close enough values.

Gaussian noise model

• Gaussian noise model: The noise at pixel x, y, N(x, y), is

a random variable.

• Simplest assumption: N(x, y) is "white noise", distributed

independently of the noise at other pixels.

Normal (Gaussian) distribution

Three Gaussians, with σ = 0.5, 1, 2 (σ = 0:5 is the narrowest).

The probability density function

2 2/2

()
2

xe
G x




 





Gaussian, or normal, distribution

with mean 0 and standard deviation σ

68% of the distribution lies within one standard deviation (std)

of the mean. 95% of the distribution lies within two standard

deviations of the mean. 99.7% of the distribution lies within

three standard deviations of the mean.

http://www.regentsprep.org/regents/math/algtrig/ats2/normallesson.htm

More on normal distributions

Modeling Gaussian noise
• random.gauss(mu, sigma) returns a number distributed according to a

Gaussian distribution: mean μ and std σ

• We will use μ = 0, and a default value σ = 10. When added to pixel
values, we will round the noise and make sure the outcome falls
within 0 to 255.

>>> import random

>>> random.gauss(0,10)

0.36121514047571907

>>> random.gauss(0,10)

21.643048694527852

>>> lst = [round(random.gauss(0,10)) for i in range(20)]

>>> lst

[-8, 22, 12, 4, -1, 2, 11, 6, -16, -1, 4, -9, -3, 1, -5, -

3, 5, 18, 19, 1]

>>> sorted(lst)

[-16, -9, -8, -5, -3, -3, -1, -1, 1, 1, 2, 4, 4, 5, 6, 11,

12, 18, 19, 22]

Add Gauss noise to image

Examples

Denoising algorithms

We will discuss three approaches to denoising, and

implement two of them:

• Denoising by Local means

• Denoising by Local Medians

• Denoising by Non local means

Of course, these three approaches are only the tip of the

iceberg...

Local denoising

• Neighborhood of the pixel x, y is defined as the set of all pixels

whose coordinates are close to x, y

• A neighborhood commonly considered is the (2k+1)-by-(2k+1)

square matrix of coordinates centered at x, y, where k is a small

integer - typically 1 or 2

• Local denoising changes the center pixel according to some

function of its neighborhood

• Called “convolution”

3 3

1, 1 , 1 1, 1

(,) 1, , 1,

1, 1 , 1 1, 1

x

x y x y x y

N x y x y x y x y

x y x y x y

     
 

  
 
      

Convolution (brief detour)

Source: Wikipedia

Remember the peaks problem?
(1st week)

Quantization
"Quantization is the process of constraining an input from a

continuous or otherwise large set of values (such as the real

numbers) to a discrete set (such as the integers)“ (Wikipedia)

Examples:

• Mathematical integration

• Signal processing (e.g., audio/image, time/space/color)

The Peaks Problem

Input: A sequence S of real numbers of
length n.

Output: All the triples (subsequences of
size 3) of S such that the
middle number is the largest of
the three.

715962736547444169435529225040

The sliding window mechanism

The computer’s

“point of view”

715962736547444169435529225040

Moving sliding window from 1D to 2D

Image Processing &

Computer Vision

Image convolution

https://ulhpc-tutorials.readthedocs.io/en/latest/cuda/exercises/convolution/

https://ulhpc-tutorials.readthedocs.io/en/latest/cuda/exercises/convolution/

Example

https://developer.nvidia.com/discover/convolution

https://developer.nvidia.com/discover/convolution

Example application: denoising

Original Result

Example application: edge detection

Original Result

Convolutional Neural Network

https://developer.nvidia.com/discover/convolutional-neural-network

https://developer.nvidia.com/discover/convolutional-neural-network

Back to local denoising

• Neighborhood of the pixel x, y is defined as the set of all pixels

whose coordinates are close to x, y

• A neighborhood commonly considered is the (2k+1)-by-(2k+1)

square matrix of coordinates centered at x, y, where k is a small

integer - typically 1 or 2

• Local denoising changes the center pixel according to some

function of its neighborhood

• Called “convolution”

3 3

1, 1 , 1 1, 1

(,) 1, , 1,

1, 1 , 1 1, 1

x

x y x y x y

N x y x y x y x y

x y x y x y

     
 

  
 
      

Denoising by local means

• Replace the observed value M(x, y), by the

average of the observed values in its

neighborhood

• Make sure not to modify the original matrix of

observed values

Local denoising: auxiliary code
• items(mat) returns a list whose elements are the matrix elements.

• local_operator applies op on every pixel (except the boundaries of the

image: pixels not in the center of a 2k+1 by 2k+1 window are left intact.)

Local means

Local means: a synthetic example

Local means: a synthetic example

Local means: another synthetic example

averaging is highly affected by "outliers"

Denoising by local means: motivation

• If the pixel x, y resides in a smooth portion of the image, then

averaging will not change it significantly

• Averaging (2k + 1)2 independent random variables with standard

deviation σ, the standard deviation of the average decreases to

which equals σ/3 for the N3x3(x, y) neighborhood

• So in smooth areas, averaging preserves the signal component of the

pixel, yet substantially decreases the noise contribution

2/ (2 1)k 

Local means: weighted variants
• Averaging can be expressed as the matrix Frobenius inner product

- sum of element by element product

• Maintains more of the original signal, with smaller noise reduction

• Put more weight close to the central pixel:

[1, 1] [, 1] [1, 1] 1/ 9 1/ 9 1/ 9

[1,] [,] [1,] 1/ 9 1/ 9 1/ 9

[1, 1] [, 1] [1, 1] 1/ 9 1/ 9 1/ 9

S x y S x y S x y

S x y S x y S x y

S x y S x y S x y

      
  

   
        

1/12 1/12 1/12

1/12 1/ 3 1/12

1/12 1/12 1/12

 
 
 
 
 

  jiji BA ,,

Denoising by local means: limitations

X Pixel that does not reside in a smooth portion of the image, does
not preserve the signal  blurred edges

X Sensitivity to spurious extreme values, example: salt & pepper
noise

• For example, suppose the original area of the image has intensity

level of 240. Yet in the N3x3(x, y) neighborhood, one pixel, e.g.,

x-1, y-1, is observed as very dark, e.g. intensity level around 20,

due to noise.

• ෠𝑇(x-1, y-1) will be corrected to 216. Each of the other 8 pixels

containing x-1, y-1 in their neighborhood, will also exhibit such

"correction", which is undesirable.

Salt & pepper noise model

Original image Salt & pepper noise Gaussian noise

Extreme gray levels (white and black) at random and

independently in a small number of pixels

Implementing salt & pepper noise

Adding S&P noise to an image

Denoising by local medians

• Replace the observed value M(x, y), by the median of
the observed values in a neighborhood of (x, y).

 The median preserves edges (a big plus).

 The median is not sensitive to spurious extreme
values, so it withstands salt and pepper noise easily.

X However, the median tends to eliminate small, fine
features in the image, such as thin contours.

X It also takes more time to compute median than mean.

Local medians: code

• Median is computed by first sorting the values in the local window,

and taking the middle element.

Local Medians: A Synthetic Example

Local medians: another synthetic example

The median ignores outliers..

Complexity of local means and local medians

• Suppose the image dimensions are n-by-m.

• The number of windows to process: O(n∙m) (k<< m, n).

• For every window, compute the average or median.

• Number of pixels in a window is (2k + 1)2 = 4k2 + 4k + 1 =

O(k2). This is the time complexity to compute the average.

• For the median: sorting  O(k2 log k2) = O(k2 log k) steps.

Faster median finding exists - linear in k. Computing median can

therefore be done in O(k2) steps too.

• All in all, O(k2nm) steps (with better median implementation).

Putting local means/medians to the test

Let’s test our methods

Try to decide which is better (and when)

Testing local means/medians with SP noise

Testing local means with SP noise

Testing local medians with SP noise

Testing local means/medians with

Gaussian noise

Testing local means/medians with

Gaussian noise

Towards non-local means: regularity in

natural images

85

• Windows centered at p and q are similar, but not to

the one centered at r.

Gaussian noise Local means Non-

local means means

• Many natural images have a high degree of redundancy.

Specifically, this means that for most small windows in the original

image, the window has many similar windows in the same image.

Denoising by non-local means

• The non-local (NL) means algorithm of (A. Buades, B. Coll, and J. M. Morel, 2005)
heavily employs the notion of non-local, similar windows. Given a window centered
at (x, y), we search for all windows in the image that are similar to it.

• In other words, we look for all (x’, y’) such that the "distance“ between the windows
centered at x, y and x’, y’ is below some fixed threshold h.

• We compute the weighted average value of all those similar center pixels (including
(x, y) itself), with higher weights assigned to windows that are more similar. The
corrected value, ෠𝑇(x, y), equals this average.

• The method is called non-local since the windows that effect the corrected value
෠𝑇(x, y) are not necessarily in close proximity to (x, y).

• Remark: This is a fairly simplified version of NL means. For reasons of efficiency,
one usually scans only a subset of all possible windows.

86

Edge detection

87

• Edge - sharp change in intensity between close pixels

• Usually captures much of the meaningful information in the image

images extracted using Sobel filter from:

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html

Erosion and dilation

88

Assume features in the foreground are bright and background is dark.

• Erosion - the removal of pixels from the periphery of features.

• shrinks foreground areas, and holes grow.

• Dilation - the addition of pixels to the periphery of features.

• enlarges foreground areas, and holes shrink.

• Like segmentation, these basic operators are often used to pre-process or post-

process images to facilitate analysis.

ErosionDilationOriginal

Erosion and dilation - example

Erosion Dilation

A microscope slide containing Clostridium botulinum cells and spores.

Spores appear bright with dark boundaries (the spore coat). Vegetative cells

were stained to provide contrast, and thus appear dark

Source: Martin, M.D., Phase contrast image of germinating spores of a non-

pathogenic clostridia that grows at low temperatures. 2013.

Binary segmentation

(th=200)

89

Open CV

Open Source Computer Vision Library

https://opencv.org/

https://opencv.org/

Install

Dilation with Open CV

Output

94

Image segmentation

http://www.google.co.il/imgres?imgurl=http://belmadogdas.com/mr_ct_segmentation.jpg&imgrefurl=http://belmadogdas.com/research.html&h=766&w=591&sz=85&tbnid=Mt3T-YLhtebXIM:&tbnh=90&tbnw=69&prev=/search?q=image+segmentation&tbm=isch&tbo=u&zoom=1&q=image+segmentation&docid=pJobuqo1-VXtQM&sa=X&ei=LzYET_qvMJPb8QPghvi6AQ&ved=0CFAQ9QEwBg&dur=521

Segmentation

• Partitioning a digital image into multiple segments.

• Goal: to simplify the representation for understanding and \ or

analysis.

• Used to locate objects and boundaries (lines, curves, etc.).

Usually, the first step in more complicated procedures: object

recognition, shape analysis , tracking…

• Examples: locating tumors in medical images; identifying

objects in satellite images (roads, forests, crops, etc.).

Source:

http://www.sonycsl.co.jp/person/nielsen/applets.html

http://www.csl.sony.co.jp/person/nielsen/SRMb/
http://www.sonycsl.co.jp/person/nielsen/applets.html

96

Image Segmentation Algorithms

• Thersholding

• Clustering

• Region growing

• Compression-based methods

• Histogram-based methods

• Model-based methods

• Etc.

Binary segmentation by thresholding
• The simplest segmentation method: apply a threshold to turn a gray-

scale image into a binary image (BW)

• Assumes the image contains two classes of pixels denoted

foreground and background, and these two classes have distinct,

different light intensities: the background is much darker than the

foreground.

Human HT29 colon-cancer cells

http://www.broadinstitute.org/bbbc/image_sets.html
Binary segmentation, threshold = 40

Implementing threshold-based

segmentation

Picking a threshold: example

Threshold = 20 Threshold = 40 Threshold = 60

• The key is to select the appropriate threshold

• Which one is the best here? Original

• When the threshold is too low (20 in this case)

areas in the image where cells are densely

populated become bulbs.

• When it is too high (60) some cells are lost.

Picking a threshold: another example

Picking a threshold: another example

Threshold = 50 Threshold = 100 Threshold = 150

Original

• We want: white = Einstein, black = background

• When the threshold is too low (50) we cannot

separate face from background.

• When it is too high (150) some areas are lost (e.g.

parts of the hair), but still good.

• With 100 – some noise in the background (left)

• How can we pick a good threshold automatically?

Otsu method for threshold calculation

• A good threshold for segmentation:

• minimizes differences within each segment, and

• maximizes differences between segments.

• Otsu’s method finds an optimal threshold for segmentation.

• Uses image histogram: grey level values distribution.

• x-axis – grey values

• y-axis – number of pixels with a particular value

Otsu method for threshold calculation

• Relies on the assumption that the foreground and the background

of the image differ substantially in their brightness.

• This assumption is not true in many cases.

• However, when this assumption holds, there are expected to be

two peaks in the gray values of an image’s histogram (bi-modal).

• In this case the lowest mid-point between these two peaks would

be a good choice for a threshold.

Foregroun

d peak

Backgroun

d peak

A good

threshold

Otsu method for threshold calculation

• When the difference between foreground and background are less

sharp, the peaks may be partly overlapping:

• When the image is rather uniform, there will be no such two peaks

at all (in which case Otsu's method will be inapplicable):

A good

threshold

Otsu's Formula

• Otsu threshold is the one that maximizes the var_between among

all possible thresholds t.

• What is the effect of the difference between the means?

• What is the effect of the relative sizes of the background and

foreground?

For every threshold t denote:

back – number of background pixels (<= t)

fore – number of foreground pixels (> t)

mean_back – mean value of the background pixels

mean_fore – mean value of the foreground pixels

var_between(t) = back * fore * (mean_back - mean_fore)2

Otsu – more formally

Source: Wikipedia

For 2 classes, minimizing the intra-class variance

is equivalent to maximizing inter-class variance

>>> im = Matrix.load("./HT29.bitmap")

>>> th = otsu(im)

38

>>> segment(im, th).display()

Otsu's Threshold = 38

Original: Human HT29

colon-cancer cells

Otsu – example execution

Using Histograms

Good candidates: 45, 110

However, 45 isn’t good …

Histograms do not contain all information..

Threshold = 45

Threshold = 110

Thresholding Abbey Road

Threshold = 50 Threshold = 100 Threshold = 150

Original
• Sometimes Thresholds are bad…

• Here we cannot say that white = people,

black = background (or the other way around)

• Thresholding is only good for certain types

of images

• Digital images with high pixel resolution and bit depth take up

lots of computer memory.

• This motivates the need for compressing images.

• During compression, some of the information in the image may

be lost, in which case the compression is termed lossy.

Otherwise, we call it lossless.

• jpg, tiff, png, bmp, gif etc., differ by the type of compression

applied to the original image.

The bmp format is lossless, while the other formats are lossy

(tiff can be both, depending on some parameter settings).

Compression and Image Formats

• jpg format partitions the image into squares of 8-by-8 pixels.

• Most such squares will exhibit only gradual, moderate changes, especially in

smooth areas of the image.

The example of jpg

• These gradual changes

can be well

approximated by far

fewer bits than the

8·8·8 = 512 bits in the

original representation.

• A factor of 10 (or even

more) saving in space

can be achieved.

Human HT29 colon-cancer cells.

In the compressed image on the right, In the

blue square all pixels are identical. In the

green square, pixels only change from top to

bottom. In the yellow square, pixels change

in both directions.

 original image highly compressed version

The example of jpg

Human HT29 colon-cancer cells.

In the compressed image on the right, all the

pixels in the blue square are identical. In the

green square, pixels only change from top to

bottom. In the yellow square, pixels change

in both directions.

Numpy (intro to DS course)

https://numpy.org/

https://numpy.org/

Scikit-image

https://scikit-image.org/

https://scikit-image.org/

Example applications with scikit-image

https://scikit-image.org/docs/dev/auto_examples/

https://scikit-image.org/docs/dev/auto_examples/

