VTN 1101N N127vnN noT1iia

Software and Information
Systems Engineering

Introduction to computer
science in Python

Fall 2021-22

Department of Software and Information
Systems Engineering

Ben-Gurion University of the Negev

Topic 13: Image representation and
processing

Signal processing

In the physical world, any quantity measurable through
time or over space can be taken as a signal

Signals are or electrical representations of time-varying
or spatial-varying physical guantities

Signal processing: applying mathematical techniques for
the extraction, transformation and interpretation of
signals, in either discrete (digital) or continuous (analog)
time

Example signals: radio, telephone, radar, sound, images,
video, sensor data

Digital images

 Digital image iIs a numeric representation of a
two-dimensional image

« Examples: photos, microscopic, medical,
astronomical

fnmnkanl
facebook

*Help me find a more
updated visualization!

End of 2010

Summer 2011 Estimate

@photobucket @ #) Picasa @ 7 vilion @

Charge Coupled Device (CCD)

Transforming light (photons) to electrical voltage
The Nobel Prize in Physics 2009

Charles Kuen Kao Wlllard S. Boyle éégrée E. Smith

Prize share: 1/2 Prize share: 1/4 Prize share: 1/4

The Nobel Prize in Physics 2009 was divided, one
half awarded to Charles Kuen Kao "for
groundbreaking achievements concerning the
transmission of light in fibers for optical
communication”, the other half jointly to Willard S.
Boyle and George E. Smith "for the invention of an
imaging semiconductor circuit - the CCD sensor."

https://www.nobelprize.org/prizes/physics/2009/prize-announcement/

Popular science (Hebrew): https://davidson.weizmann.ac.il/online/sciencehistory/|w*nn-n1'ww-nx- nminna

https://www.nobelprize.org/prizes/physics/2009/prize-announcement/
https://davidson.weizmann.ac.il/online/sciencehistory/החיישן-ששינה-את-התמונה

Image representation and processing

Digital image representation
Generating synthetic images
Basics of image processing
Noise, and local noise reductions
Image segmentation

Basic model of a digital image
 Pixel: each element M[X, y] of the image

n X m matrix

m columns
X >
pixel pixel
(0,0) (0,m-1)
y pixel
____________________________ W
pixel
n I'OWS \” ("_1’0)

Resolution

esolution is the capability of the sensor to observe or measure
the smallest object clearly with distinct boundaries

« Resolution depends on the physical size of a pixel
Igher resolution = more pixels per area = pixel size

T42 P T85

A%
WIS o
e
CH
“‘.““.‘.‘nu i HR
ki !
e,
u\‘lg‘ puasstiy

10 x 10 20 x 20 30 x50 100 x 100

Source: wikipedia

2D, 2D + time (video), 3D, color

A 2D Image Is encoded as a n-by-m matrix M
Video — a 3" "time* dimension f

Y |
spatially 2D

time-lapse

3D Image
Color (e.g., RGB)

Gray scale images

We discuss gray scale images only (for simplicity)

Real numbers expressing gray levels have to be
discretized

A good quality photograph (human visual inspection)
has 256 gray-level values (8 bits) per pixel

The value 0 represents black, 255 represents white

In some applications (e.g., medical imaging) 4096
gray levels (12 bits) are used

Bit Depth

e Number of bits per piXEl. Bit Depth and Gray Levels in Digital Images
2 Bit 4 Bit 6 Bit 7 Bit 8 Bit 10 Bit

Image from:
http://micro.magnet.fsu.edu/
16 64 128 266 1,024
Gray Levels >
Bit Depth .
(pth) Figure §

« A human observer sees at most a few hundreds shades of gray

« Higher bit depths images: typically for automated analysis by a
computer

http://micro.magnet.fsu.edu/primer/digitalimaging/digitalimagebasics.html

Image Quantization

Number of bits per pixel

24 bit RGB 16 colors

' H

Note that both images have the same pixel & spatial resolution

Gray scale image

8 bits per pixel (28=256 gray levels): 0 = black,

B tmpimdIBt.BMP - ACDSee Classic ol & |
File Edit View Zoom Tools Help
N 226 0QRAAE S 2 X ME (N e« P

1/1 & tmpimdiBtBMP 12 KB [10x10:256 bmp |4970% |Loaded in 0.0 s

38,

T,

112,

41,

38,

45,

47,

71,

12,

47,

26,

83,

137,

406,

le,

43,

30,

57,

55,

45,

255 = white
21, 3o, 19,
34, 168, 159,
34, 101, 129,
35, 19, 35,
38, 67, 45,
46, 51, 44,
54, 45, 40,
66, 63, 70,
43, 57, 90,
36, 78, 114,

28,

48,

62,

52,

21,

39,

46,

84,

111,

113,

33,

50,

54,

18,

29,

53,

23,

65,

92,

81,

44,

14,

40,

57,

59,

31,

26,

62,

13,

54,

31,

55,

21,

39,

10,

24,

58,

91,

74,

57,

112,

211,

86,

123,

130,

64,

40,

49,

56,

44

BW / Grayscale / RGB

« Black & white / gray-level / RGB

Black & white 256 gray level image
(1 bpp) (8 bpp)

Images from: http://www.csse.uwa.edu.au/~wongt/matlab.html

"true color" image
(8+8+8 = 24 bpp)

Video tutorial on colors here: hitps://www.youtube.com/watch?v=syJo37AKaro

https://www.youtube.com/watch?v=syJo37AKaro

An Image

Any guesses as to what this image is (or is part of)?

[183, 148, 143, 181, 178, 156, 165, 126, 123, 181, 189, 148, 139, 135, 142]
[i78, 138, 138, 175, 158, 147, 179, 171, 168, 173, 147, 117, 127, 139, 139]
[ie8, 176, 123, 147, 142, 161, 165, 176, 140, 154, 125, 136, 168, 122, 99]
[161, 173, 127, 147, 154, 144, 6 161, 170, 122, 113, 105, 138, 177, 175, 104]
[i64, 200, 162, 158, 167, 111, 151, 174, 140, 115, 117, 141, 133, 146, 140]
[i70, 208, 171, 158, 204, 152, 158, 182, 150, 126, 138, 160, 134, 147, 157]
[i71, 219, 170, 140, 199, 166, 143, 157, 134, 106, 123, 164, 128, 128, 133]
[192, 232, 180, 156, 200, 181, 149, 168, 140, 130, 144, 167, 135, 120, 125]
[i60, 154, 122, 157, 194, 181, 145, 175, 122, 124, 141, 145, 144, 144 128]
[i65, 145, 140, 205, 197, 150, 157, 197, 124, 128, 144, 133, 145, 162, 111]
[199, 160, 172, 174, 175, 184, 136, 156, 125, 108, 135, 145, 133, 121, 129]
[234, 215, 218, 193, 159, 129, 104, 137, 135, 118, 141, 158, 135, 122, 128]
[254, 1989, 180, 142, 163, 168, 163, 147, 140, 127, 144, 151, 127, 144, 109]
[173, 152, 173, 188, 199, 175, 182, 124, 117, 116, 141, 154, 122, 150, 126]
[154, 163, 200, 206, 197, 172, 142, 102, 124, 128, 155, 180, 138, 142, 139]

Our implementation: the class Matrix

« Class Matrix, implemented as a list of lists:

class Matrix:

def

__1init (self, n, m, val=0):

assert n > 0 and m > 0O

self.rows = [[vall*m for 1 in range (n)]
dim(self) :

return len(self.rows), len(self.rows[0])

repr (self):

if len(self.rows)>10 or len(self.rows[0])>10:

return "Matrix too large, specify submatrix™
return "<Matrix {}>".format (self.rows)

eq (self, other):
return isinstance (other, Matrix) and \
self.rows == other.rows

The class Matrix

 Additional methods (we will skip most of these today):
d copy

d Arithmetical operations, e.g., matl + mat?2

O getitem__ :receives a tuple (1,))
O setitem__ : receives a tuple (1,J) and val
| and j can be both integers or both slices

d display: shows the image represented by a matrix, uses the
library matplotlib (remember graph visualization?)

1 save and load: enable storing and reading images from files

class Matrix - item access and assignment

>>> m = Matrix (10, 10) # 10x10 matrix of zeros

>>> m[4,5] # same as m. getitem ((4,5))

0

>>> m([4,5] = 45 # same as m. setitem ((4,5),45)
>>> m[4,5]

45

Note: the code file contains an additional feature: accessing and
assignment of a whole slice.

e >>> m[3:5, 4:8] # here 1 and j are both slices
<Matrix [([O , O, O, O], [0, 45, 0, 0] >

ing an image

| d displayi

INg, Saving an

_oad

tmap")

bi

image

mat.save ("./rand

image.bitmap")

Matrix.load ("./rand

mat2.display ()

mat2

TN TN 3 M

A

°

200 300 400 500

100

A few Issues to discuss regarding
Image representation

* “Translating” our custom .bitmap format to
standard image formats in next (hidden) slide
(which I’ll be skipping today)

* Any suggestions on how to improve the inner
representation of an image?
e numpy arrays (intro to DS)

» Of course there are existing Python libraries
with image (and image processing)
functionalities, e.g., https://scikit-image.org/

https://scikit-image.org/

Generating simple synthetic Images

Drawing a black square

def black square (mat) :

""" add a black square at upper left corner '''

n,m = mat.dim/()
1f n<l100 or m<100:
return None
else:
new = mat.copy ()
for 1 in range (100} :
for 7] in range(100):
newl[i,]j] = 0
return new

0

200

black square (mat) .display()

300

400

Horizontal lines

def horizontal (size=512):
horizontal lines = Matrix(size,size)

for i in range(l,size):

if i%10 == 0O:
for] in range(size):
horizontal lines[i,J] = 2535

return horizontal lines

im = horizontal (512)
im.display()

Functions as arguments

def synthetic(n, m, func):
" produces a synthetic image "upon reqguest"™ """
new = Matrix(n,m)
for 1 in range(n) :
for] in range (m):
new[i,]j] = func(i,]) %256
return new

def sin mul (i, Jj): def cos mul (i, J):

return math.sin ((i**2+j**2)) %256 return math.cos (4% (1**2 + j**2))%256
synthetic(100,100,sin mul) .display() synthetic (100,100, cos mul) .display()
U U Ta o 1 L1 L
. ' - - - .t - : u ; ¥ L -
I_] :+ - _.
. 0 - . LiE L}
2[} . .- - [2[} -‘r: ',!,' : . ar
- -] = L} - 1
: +.H " 2 H 5
m L] L] L] " m - ". -:t-'
— L | - I
' B0 L 5
m - 3 11'
[] 0 . = . : u :{ L] -::i-]
m [] | : m L] L] - ;‘i
bl L <l = L |. 1 F s . .F
0 20 40 &0 80
0 20 40 B0 80

Try generating synthetic images yourself!

Digital Image Processing

Digital image processing

Image processing is any form of signal processing for which
the input Is an image, the output may be either an image or a
set of characteristics or parameters related to the image

Source: Wikipedia

Digital image processing

« Common problems:

Noise reduction (denoising) - removing noise from an image.

Segmentation - partitioning a digital image into segments (e.g., identify the
boundaries of cells in a multi-cell image)

Tracking - relate objects in subsequent frames of a film
Edge detection — detecting discontinuities in the image

Registration - transforming different images into one coordinate system (e.g.,
minor shifts in the camera position in subsequent frames

Color correction.

Typical applications:

Machine vision

Medical / biological image analysis
Face detection

Object recognition

Augmented reality

Blur

« Blur and noise are two major effects hampering image accuracy

« Blur is intrinsic to Image acquisition. For example, out of focus
due to camera motion or due to the optics

 Take a signal processing course (probably not in ISE) to

understand more...
(t)&[[O
Wodd! | Warld

An orlglnal image (Ieft) and a blurred version thereof (right). Taken from
Wikipedia.

in Stote Univ ty

HHHHHHHHHH

Noise and denoising

* The observed value at pixel x, y, M(X, y), equals the sum
of the true value T(X, y) plus noise N(X, V)

M(X,y) = T(X, y) + N(X, y)

 Denoising algorithms: given the observed image M,
produce a new image, T, which should be close to the
original image T

 This goal is not well defined, and can be solved only
with putting constraints on the image and on the noise

Assumptions on the Images

» \We assume the image Is piecewise smooth:
most of the Image's area consists of large,
smooth regions where light intensity varies
continuously — If x;, y; and X, y, are
neighbors, then M[X,,y,] and M[Xx,,y,] attain
close enough values.

Gaussian noise model

« Gaussian noise model: The noise at pixel X, y, N(x, y), IS
a random variable.

« Simplest assumption: N(X, y) Is "white noise", distributed
Independently of the noise at other pixels.

Normal (Gaussian) distribution

e—X2/2c72

O~N27

The probability density function G,(X)=

Gaussian, or normal, distribution
with mean 0 and standard deviation ¢

5

Three Gaussians, witho = 0.5, 1, 2 (o = 0:5 is the narrowest).

More on normal distributions

68% of the distribution lies within one standard deviation (std)
of the mean. 95% of the distribution lies within two standard
deviations of the mean. 99.7% of the distribution lies within
three standard deviations of the mean.

mean

Symmetric About 68% within
about mean

| s.d. of mean

<€ >
| About 95%
0
i within 2 s.d.
v oflmca: 2 of mean
x=3a x-2g X-o X xtao x+20 x+3c

http://www.regentsprep.org/regents/math/algtrig/ats2/normallesson.htm

Modeling Gaussian noise

« random.gauss(mu, sigma) returns a number distributed according to a
Gaussian distribution: mean pand std o

« We will use p =0, and a default value ¢ = 10. When added to pixel
values, we will round the noise and make sure the outcome falls
within 0 to 255.

>>> import random

>>> random.gauss (0,10)

0.36121514047571907

>>> random.gauss (0,10)

21.643048694527852

>>> 1st = [round(random.gauss(0,10)) for i1 1n range (20)]

>>> 1st

(-8, 22, 12, 4, -1, 2, 11, o6, -1¢, -1, 4, -9, -3, 1, -5, -
3, 5, 18, 19, 1]

>>> sorted(lst)

(-16, -9, -8, -5, -3, -3, -1, -1, 1, 1, 2, 4, 4, 5, o6, 11,
12, 18, 19, 22]

Add Gauss noise to image

HHAREHRTHAAAAFAARAFAFAFAAAAFRRARHFH
Adding noise to images,
for testing noise reduction

FHAFFHH AR AF AR AR

def add gauss(mat, sigma=10):
''"" Generates Gaussian noise with mean 0 and SD sigma.
Adds indep. noise to pixel,
keeping values in 0..2553"""
n,m = mat.dim()
new = mat.copy()
for i in range(n):
for jJ in range(m):
noise = round (random.gauss (0, sigma))
i1f noise > 0:
newl[i,]] = min(mat[i,]] + noise, 253)
elif noise < 0O:
newl[i,]] = max(mat[i,]] + noise, 0)

return new

Examples

newlO = add gauss (abbey)

new20 = add gauss (abbey, sigma =20)
newo0 = add gauss (abbey, sigma =50)
news = join(newlO, new20, newd0, direction='h')

news.display ()

Denoising algorithms

We will discuss three approaches to denoising, and
Implement two of them:

 Denoising by Local means
 Denoising by Local Medians
 Denoising by Non local means

Of course, these three approaches are only the tip of the
Iceberg...

Local denoising

Neighborhood of the pixel x, y is defined as the set of all pixels
whose coordinates are close to X, y

A neighborhood commonly considered is the (2k+1)-by-(2k+1)
square matrix of coordinates centered at X, y, where k is a small
Integer - typically 1 or 2

x-1y-1 x,y—-1 x+ly-1
N, .(X,y)=| x-1y X,y X+1y
Xx-Ly+1 x,y+1 x+1ly+1|

Local denoising changes the center pixel according to some
function of its neighborhood
Called “convolution”

Convolution (brief detour)

=2
0.5 |
0.6 f
o.af
a.zf
i 1 1 i
0.
0.
0.
0.
i 1 1 i

Source: Wikipedia

Remember the peaks problem?

Quantization

"Quantization is the process of constraining an input from a
continuous or otherwise large set of values (such as the real
numbers) to a discrete set (such as the integers)” (Wikipedia)

Examples:
« Mathematical integration

« Signal processing (e.g., audio/image, time/space/color)

30 4 3.0 -

25 4 25 4

2.0 4 2.0 4

15 L5
1.0 - ¢ 1.0 -
0.5 4 0.5 4

T T T | 0.0 T T T T \

0.0 T
0jo 0.2 o4 & 0.8 10 o 02 0.4 6 0.8 10
=05 =05 -

=1.0 =1.0

The Peaks Problem

Input: A sequence S of real numbers of
length n.

Output: All the triples (subsequences of
size 3) of S such that the
middle number is the largest of
the three.

kI

The sliding window mechanism

The computer’s
“point of view”

53

43

69

41

44

47

65

/3

62

59

/1

40

50

22

29

53

43

69

41

44

47

65

/3

62

59

71

Moving sliding window from 1D to 2D

I'mage Processing &
Computer Vision

Image convolution

Original Image

%
%
%

https://ulhpc-tutorials.readthedocs.io/en/latest/cuda/exercises/convolution/

https://ulhpc-tutorials.readthedocs.io/en/latest/cuda/exercises/convolution/

Input image

Example

Convolution Feature map
Kernel

P S S i

-1 8 -1

-1 -1 -1

https://developer.nvidia.com/discover/convolution

https://developer.nvidia.com/discover/convolution

Example application: denoising

Original Result

Example application: edge detection

Result

Convolutional Neural Network

feature maps featurd W
S

input leature maps feature maps \ :
32x 32 28 x 28 14x 14 AN, T

‘ \
convolution ion— = l
feature extraction classification

https://developer.nvidia.com/discover/convolutional-neural-network

https://developer.nvidia.com/discover/convolutional-neural-network

Back to local denoising

Neighborhood of the pixel x, y is defined as the set of all pixels
whose coordinates are close to X, y

A neighborhood commonly considered is the (2k+1)-by-(2k+1)
square matrix of coordinates centered at X, y, where k is a small
Integer - typically 1 or 2

x-1y-1 x,y—-1 x+ly-1
N, .(X,y)=| x-1y X,y X+1y
Xx-Ly+1 x,y+1 x+1ly+1|

Local denoising changes the center pixel according to some
function of its neighborhood
Called “convolution”

Denoising by local means

» Replace the observed value M(x, y), by the
average of the observed values in Iits
neighborhood

« Make sure not to modify the original matrix of
observed values

Local denoising: auxiliary code

* items(mat) returns a list whose elements are the matrix elements.

def items (mat):
''"'" flatten mat elements into a list "''
n,m = mat.dim()
lst = [mat[i,]] for i in range(n) for J in range (m)]
return lst

* |ocal_operator applies op on every pixel (except the boundaries of the
image: pixels not in the center of a 2k+1 by 2k+1 window are left intact.)

def local operator(mat, op, k=1):
''" RApply op to every pixel.
op is a local operator on a sgquare neighbourhood
of size 2k+1 X 2k+1 around a pixel '''
mat.dim/{()
mat.copy() # brand new copy of A

n,m =
res =
for 1 in range(k,n-k):
for jJ in range(k,m-k) :
res[i,]j] = op(items (mat[i-k:i+k+1,j-k:j+k+1]))
return res

| ocal means

def average(lst):
n = len(lst)
return round(sum(lst)/n)

def local means (mat, k=1):
return local operator (mat, average, k)

Local means: a synthetic example

mat = Matrix (4 ,4)
for 1 in range (4):
for j in range (4):
mat[i,]J] = 1 + (j**2)
for i in range (4):
print ([mat[i,]j] for j] in range (4)])
mat.display ()

[0,
[1,

4, 9]
10]

1,
2, 5,

(2, 3, 6, 11]
4, T, 12]

[3,

Local means: a synthetic example

matZ = local means (mat)
for i in range (4):

print ([mat2[i,]] for J in range (4)])
matZ2.display /()

[0, 1, 4, 9] [0, 4, 9]
[1, 2, 5, 10] [1,)3, 6©,] 10]
[2, 3, 6, 11] (2,14, 7,1 11]
[3, 4, 7, 12] [3, 4, 7, 12]

Local means: another synthetic example

mat[2,2] = 255 matZ2 = local means (mat)
for i in range (4): for i1 in range (4):
print ([mat[i,]j] for j in range (4)]) print ([mat2[i,]j] for j in range (4)])
mat.display () mat2.display()
(0, 1, 4, 9] (0, 1, 4, 9]
[1, 2, 5, 10] [1, 30, 33, 10]
[2, 3, 255, 11] [2, 31, 34, 11]
[3, 4, 7, 12] (3, 4, 7, 12]
-05
0.0
05
10
15
20
25
3.0
0 1 2 3 33 0 1 2 3

averaging is highly affected by "outliers"

Denoising by local means: motivation

 |f the pixel x, y resides in a smooth portion of the image, then
averaging will not change it significantly

« Averaging (2k + 1)? independent random variables with standard
deviation o, the standard deviation of the average decreases to

o /(2K +1)>2

which equals 6/3 for the N,,5(X, y) neighborhood

« S0 In smooth areas, averaging preserves the signal component of the
pixel, yet substantially decreases the noise contribution

Local means: weighted variants

» Averaging can be expressed as the matrix Frobenius inner product
- sum of element by element product

ZALJ' ‘Bi,j

S[x-1,y-1] S[x,y—-1 S[x+1y-1]\(1/9 1/9 1/9)
S[x-1,vy] S[X, Y] S[x+1,y] (|1/9 1/9 1/9
S[x=Ly+1] S[x,y+1] S[x+1y+1]){1/9 1/9 1/9

« Put more weight close to the central pixel:
1/12 1/12 1/12

1/12 1/3 1/12
1/12 1/12 1/12

« Maintains more of the original signal, with smaller noise reduction

Denoising by local means: limitations

Pixel that does not reside in a smooth portion of the image, does
not preserve the signal = blurred edges

Sensitivity to spurious extreme values, example: salt & pepper
noise

» For example, suppose the original area of the image has intensity
level of 240. Yet in the Ng,5(X, ¥) neighborhood, one pixel, e.g.,
X-1, y-1, is observed as very dark, e.g. intensity level around 20,
due to noise.

o T(x-1,y-1) will be corrected to 216. Each of the other 8 pixels
containing x-1, y-1 in their neighborhood, will also exhibit such
"correction”, which is undesirable.

Salt & pepper noise model

Extreme gray levels (white and black) at random and
iIndependently in a small number of pixels

Original image Salt & pepper noise Gaussian noise

Implementing salt & pepper noise

def add SP(mat, p=0.01):

n,m
new
for

Generates salt and pepper noise:
Each pixel is "hit" indep. with prob. p
If hit, it has fifty fifty chance of becoming
white or black. '''
= mat.dim()
= mat.copy ()
1 in range(n):
for] in range (m):
rand = random.random() #a random float in [0,1)
if rand < p:
if rand < p/2:
newf[i,j] = 0
else:
newl[i,]] = 2553

return new

Adding S&P noise to an image

spl = add SP (abbey)
sp2 = add SP (abbey, p =0.02)
spS = add SP(abbey, p =0.05)

joinedl = join (abbey, spl, direction='h')
joined2 = join(sp2, spdS, direction='h'")
joined = join(joinedl, joined2, direction = 'v')

joined.display ()

0 200 400 600 800 1000

Denoising by local medians

* Replace the observed value M(X, y), by the median of
the observed values in a neighborhood of (x, y).

v The median preserves edges (a big plus).

v The median is not sensitive to spurious extreme
values, so It withstands salt and pepper noise easily.

X However, the median tends to eliminate small, fine
features in the Image, such as thin contours.

X It also takes more time to compute median than mean.

| ocal medians: code

« Median is computed by first sorting the values in the local window,
and taking the middle element.

def median(lst) :
sort lst = sorted(lst)

n = len(sort 1st)

if n32==1: # odd number of elements. well defined median
return sort lst[n//2]

else: # even number of elements. average of middle two

return (int(sort 1lst[-1+n//2]) + int(sort 1st[n//21)) // 2

def local medians (mat, k=1):
return local operator (mat, median, k)

Local Medians: A Synthetic Example

mat = Matrix (4 ,4)
for 1 in range (4):
for] in range (4):
mat[i,Jj] = 1 + (j**2)
for i in range (4):
print ([mat[i,]j] for j imn range (4)])
mat.display ()

(0, 1, 4, 9]
(1, 2, 5, 10]
[2, 3, 6, 11]
[3, 4, 7, 12]

matb = local medians (mat)
for 1 in range (4):

print ([matb[i,]j] for j in range (4)])
matb.display()

[0, 1, 4, 9]
[1, 2, 5, 10]
[z, 3, 6, 11]
[3, 4, 7, 12]

Local medians: another synthetic example

mat [2,2]=255
print ("Original:")
for i in range (4):
print ([mat[i,]j] for j imn range (4)])

Original:
[0, 1, 4, 9]

mant="iocai_ﬂean5fTat} [1, 2, 5, 10]
?rln.{. oca E?E?:) [2, 3, 255, 11]
or i in range : [3, 4, 7, 12]

print ([matb[i,]] for j in ranage (4)])
matc = local medians (mat)

Local Means:
[0, 1, 4, 9]
1, 30, 33, 10]
, 31, 34, 11]
, 4, 7, 12]

print ("Local Medians:")
for 1 in range (4):
print ([matc[i,]j] for j in range (4)])

Local Medians:

[0, 1, 4, 9]

. . i [1, 2, 5, 10]

The median ignores outliers.. 2, 3, 7, 11)
[3, 4, 7, 12]

Complexity of local means and local medians

Suppose the image dimensions are n-by-m.
» The number of windows to process: O(n‘m) (k<< m, n).
» For every window, compute the average or median.

« Number of pixels inawindow is (2k + 1) =4k? + 4k + 1 =
O(k?). This is the time complexity to compute the average.

« For the median: sorting =» O(k? log k?) = O(k? log k) steps.

Faster median finding exists - linear in k. Computing median can
therefore be done in O(k?) steps too.

« Allinall, O(k’nm) steps (with better median implementation).

Putting local means/medians to the test

Let’s test our methods

Try to decide which is better (and when)

Testing local means/medians with SP noise

spl add SP (abbey)

sp2 add SP(abbey, p =0.02)

spS = add SP(abbey, p =0.05)

joinedl = join (abbey, spl, direction='h'")
joined2 = join(sp2, spdS, direction='h')
joinedAbbeySP = join(joinedl, joined2, direction
joinedAbbeySP.display ()

200 400 600 800 1000

Testing local means with SP noise

#this code will take a few seconds to run
denoised by means = local means (joinedAbbeySP)
denoised by means.display ()

Testing local medians with SP noise

#this code will take a few seconds to run
denoised by medians = local medians (joinedAbbeySP)
denoised by medians.display ()

0 200 400 600 800 1000

Testing local means/medians with
Gaussian noise

newl0 = add gauss (abbey)
new20 = add gauss (abbey, sigma =20)
newd>0 = add gauss (abbey, sigma =50)

JjoinedAbbeyGauss = join(newlO, new20, new30, direction='h')
JjoinedAbbeyGauss.display ()

{ '.' b & e : ; z ::v; : A
8. - S Vs o7
1 2 - - N . Ny ; .: " . vt - (X
400 '_/-‘!_ A ' Py A B ' & ‘
500 T 3 — - S

0 200 400 600 800 1000 1200 1400

Testing local means/medians with
Gaussian noise

#this code will take a few seconds to run
Gauss denoised by means = local means (joinedAbbeyGauss)
Gauss denoised by means.display ()

400 ; LAY A\,
s . LN

0 200 400 600 800 1000 1200 1400

#this code will take a few seconds to run
Gauss denoised by medians = local medians (joinedAbbeyGauss)
Gauss denoised by medians.display ()

0
100
200

0 200 400 600 800 1000 1200 1400

Towards non-local means: regularity In
natural Images

« Many natural images have a high degree of redundancy.
Specifically, this means that for most small windows in the original
Image, the window has many similar windows in the same image.

Gaussian noiss Local means
local means means

« Windows centered at p and g are similar, but not to
the one centered at r. 85

Denoising by non-local means

The non-local (NL) means algorithm of (A. Buades, B. Coll, and J. M. Morel, 2005)
heavily employs the notion of non-local, similar windows. Given a window centered
at (x, y), we search for all windows in the image that are similar to it.

In other words, we look for all (X', y’) such that the "distance” between the windows
centered at x, y and X', y’ is below some fixed threshold h.

We compute the weighted average value of all those similar center pixels (including
(x, y) itself), with higher weights assigned to windows that are more similar. The
corrected value, T'(x, y), equals this average.

The method is called non-local since the windows that effect the corrected value
T(x, y) are not necessarily in close proximity to (x, y).

Remark: This is a fairly simplified version of NL means. For reasons of efficiency,
one usually scans only a subset of all possible windows.

86

Edge detection

 Edge - sharp change in intensity between close pixels
 Usually captures much of the meaningful information in the image

Specimen Image

Filtered Image

images extracted using Sobel filter from:
http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html

87

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html

Erosion and dilation

Assume features in the foreground are bright and background is dark.
 Erosion - the removal of pixels from the periphery of features.
« shrinks foreground areas, and holes grow.

« Dilation - the addition of pixels to the periphery of features.
 enlarges foreground areas, and holes shrink.

Original Dilation Erosion

» Like segmentation, these basic operators are often used to pre-process or post-
process images to facilitate analysis.

Erosion and dilation - example

Binary segmentation
(th=200)

Aol

A microscope slide containing Clostridium botulinum cells and spores.
Spores appear bright with dark boundaries (the spore coat). Vegetative cells
were stained to provide contrast, and thus appear dark

Source: Martin, M.D., Phase contrast image of germinating spores of a non-
pathogenic clostridia that grows at low temperatures. 2013.

Erosion Dilation

Open CV

Open Source Computer Vision Library

0
GO

OpenCV

https://opencv.org/

https://opencv.org/

|Install

pip install opencv-python

Collecting opencv-python

Downloading opencv_python-4.5.4.60-cp38-cp38-win_amd64.whl (35.1 MB)
Requirement already satisfied: numpy>=1.17.3 1n c:\users\assaflanacond
Installing collected packages: opencv-python
Successfully installed opencv-python-4.5.4.60
Note: you may need to restart the kernel to use updated packages.

Dilation with Open CV

import numpy as np
import cv2

circle ker 3x3 = np.array(]|
[@, 255, @],
[255, 255, 255],
[@, 255, @]

], np.uint8)

fixing the bad text scan

bad txt = cv2.imread('Scanl _eroded.jpg', 0)

fixed text = cv2.dilate(bad txt, circle ker 3x3, iterations=1)
cv2.imshow("original™, bad txt)

cv2.imshow("fixed text", fixed text)

cv2.waitKey (@)

Output

®1 origina = O

S & Fote Bileclin

HP:&EE.EE,
WIQ.nM_j- warkbhs work

CopeXarl Grale Repiyn Coifins" et Se
d"lﬁ a-;‘-uu. o 4
h!-.t sige vy Fomilligw Syt iy
& adx Ly 12 W‘ﬂﬁ-,ﬁlf_]

B ! fixed text — O > %

S o Fote Dele i

- Meog, ‘vﬂlzail ELQ.

Q/ D Lomporandy g wa-b by worg
fo,nk'l Crgute %a ot ome _aut Sa
e Cma C’-A-.\o“-

Prmrsgn Loy Smhdl ba gopllnsel
b ook glge (71 Uy Semiln Sompf Mhmy
W adx b, 11 tmrsage "“"",W_’f_]

= "'W\)
é‘*o Lol e otr de Omde § Ju.._.-&

ool utww&

Image segmentation

‘Ml

{a) Color Labels (ACA) (b)) Texture Classs

() Crude Segmentation () Final Segmentation

http://www.google.co.il/imgres?imgurl=http://belmadogdas.com/mr_ct_segmentation.jpg&imgrefurl=http://belmadogdas.com/research.html&h=766&w=591&sz=85&tbnid=Mt3T-YLhtebXIM:&tbnh=90&tbnw=69&prev=/search?q=image+segmentation&tbm=isch&tbo=u&zoom=1&q=image+segmentation&docid=pJobuqo1-VXtQM&sa=X&ei=LzYET_qvMJPb8QPghvi6AQ&ved=0CFAQ9QEwBg&dur=521

Segmentation

Partitioning a digital image into multiple segments.

Source:

http://www.sonycsl.co.jp/person/nielsen/applets.html

Goal: to simplify the representation for understanding and \ or
analysis.

Used to locate objects and boundaries (lines, curves, etc.).
Usually, the first step in more complicated procedures: object
recognition, shape analysis , tracking...

Examples: locating tumors in medical images; identifying
objects In satellite images (roads, forests, crops, etc.).

http://www.csl.sony.co.jp/person/nielsen/SRMb/
http://www.sonycsl.co.jp/person/nielsen/applets.html

Image Segmentation Algorithms

Thersholding

Clustering

Region growing
Compression-based methods
Histogram-based methods
Model-based methods

Etc.

96

Binary segmentation by thresholding

« The simplest segmentation method: apply a threshold to turn a gray-
scale image into a binary image (BW)

« Assumes the image contains two classes of pixels denoted
foreground and background, and these two classes have distinct,
different light intensities: the background is much darker than the
foreground.

Human HT29 colon-cancer cells .)
Binary segmentation, threshold = 40

http://www.broadinstitute.org/bbbc/image_sets.html

Implementing threshold-based

segmentation

def segment (mat, threshold):
""" Bilnary segmentation of image (matrix)
using a threshold

n,m = mat.dim()
out = Matrix(n,m)

for x in range(n):
for v in range (m) :
if mat[x, v] >= threshold:
out [x,vy] = 255 #white
else:
out[x,v] = 0 #black

return out

Picking a threshold: example

The key is to select the appropriate threshold
Which one is the best here? Original

When the threshold is too low (20 in this case)
areas In the image where cells are densely
populated become bulbs.

When it is too high (60) some cells are lost.

Threshold = 20 Threshold = 40 Threshold = 60

Picking a threshold: another example

=18 g E-T7-18
oUt_20.bmp oUt_40.bmp oUt_s0.bmp oLt_80.bmp
| "k-227-18 [5E-827-18 [55:627-18 [65:627-18 [65:6278"

out_100.bmp out_120.bmp out_140.bmp out_160.bmp out_180.bmp

Picking a threshold: another example

We want: white = Einstein, black = background

When the threshold is too low (50) we cannot Original
separate face from background.

When it is too high (150) some areas are lost (e.qg.
parts of the hair), but still good.

With 100 — some noise in the background (left)
How can we pick a good threshold automatically?

Threshold = 50 Threshold = 100

Otsu method for threshold calculation

» A good threshold for segmentation:
* minimizes differences within each segment, and
* maximizes differences between segments.

« Otsu’s method finds an optimal threshold for segmentation.

« Uses image histogram: grey level values distribution.
* X-axis — grey values
« y-axis — number of pixels with a particular value

Otsu method for threshold calculation

Relies on the assumption that the foreground and the background
of the image differ substantially in their brightness.

This assumption is not true in many cases.

However, when this assumption holds, there are expected to be
two peaks in the gray values of an image’s histogram (bi-modal).

In this case the lowest mid-point between these two peaks would
be a good choice for a threshold.

Foregroun
d peak

Otsu method for threshold calculation

When the difference between foreground and background are less
sharp, the peaks may be partly overlapping:

0 A good >I 255

When the image is rather uniform, there will be no such two peaks
at all (in which case Otsu's method will be mappllcable)

A

255

Otsu's Formula

For every threshold t denote:
back — number of background pixels (<=1)
fore — number of foreground pixels (> t)

mean_back — mean value of the background pixels
mean_fore — mean value of the foreground pixels

var_between(t) = back * fore * (mean_back - mean_fore)?

Otsu threshold is the one that maximizes the var_between among
all possible thresholds t.

What is the effect of the difference between the means?

What is the effect of the relative sizes of the background and
foreground?

Otsu — more formally

The algorithm exhaustively searches for the threshold that minimizes the intra-class variance, defined as a weighted sum of variances of the two classes:
o (t) = wo(t)og (t) + wi ()0 (¢)
Weights wy and w, are the probabilities of the two classes separated by a threshold ¢ ,and 020 and g% are variances of these two classes.

The class probability wg 3 (t} is computed from the L bins of the histogram:

w(#) = p6 For 2 classes, minimizing the intra-class variance
= IS equivalent to maximizing inter-class variance

Lsiriution
Inier-Cass War oo

1 b 100 1 L]]

Pixa] Infensily SOUI’CG W|k|p€d|a

Otsu — example execution

Original: Human HT29

colon-cancer cells

>>> im = Matrix.load("./HT29.bitmap")
>>> th = otsu(im)
38

>>> segment (im, th).display()

Otsu's Threshold = 38

2 a0’
*
.... ‘e g o

- ..'.'. .Q -

[* B
® o3 % ._* -
% N AL VLA

(] o
o v e T o
P o o® v .0

Using Histograms

einstein=Matrix.leoad('albert-einstein-1951.bitmap’
plt.hist(items(einstein), bins=256)} Threshold = 45

primt()

3000 -

2500
2000
1500 4

1000 1

'Y

0 30 1061 150 200 250

Good candidates: 45, 110
However, 45 isn’t good ...
Histograms do not contain all information..

500 4

Thresholding Abbey Road

Sometimes Thresholds are bad...

Here we cannot say that white = people,
black = background (or the other way around)

Thresholding is only good for certain types
of Images

Original

Threshold = 50 Threshold = 100

Compression and Image Formats

Digital images with high pixel resolution and bit depth take up
lots of computer memory.

This motivates the need for compressing images.

During compression, some of the information in the image may
be lost, In which case the compression is termed lossy.
Otherwise, we call it lossless.

Jpg, tiff, png, bmp, gif etc., differ by the type of compression
applied to the original image.

The bmp format is lossless, while the other formats are lossy
(tiff can be both, depending on some parameter settings).

The example of jpg

 Jpg format partitions the image into squares of 8-by-8 pixels.

* Most such squares will exhibit only gradual, moderate changes, especially in
smooth areas of the image.

original image highly compressed version

» These gradual changes
can be well
approximated by far
fewer bits than the
8-8-8 = 512 bits in the
original representation.

« Afactor of 10 (or even
more) saving in space
can be achieved.

Human HT29 colon-cancer cells.

In the compressed image on the right, In the
blue square all pixels are identical. In the
green square, pixels only change from top to
bottom. In the yellow square, pixels change
in both directions.

The example of jpg

Human HT29 colon-cancer cells.

In the compressed image on the right, all the
pixels in the blue square are identical. In the
green square, pixels only change from top to
bottom. In the yellow square, pixels change
in both directions.

Numpy (intro to DS course)

NumPy

00

e

N

¢

A))
A\

The fundamental package for scientific computing with Python

GET STARTED

N um Py Vv 1. 1 9.0 First Python 3 only release - Cython interface to numpy.random complete

POWERFUL N-DIMENSIONAL ARRAYS

Fast and versatile, the NumPy vectorization,
indexing, and broadcasting concepts are the de-
facto standards of array computing today.

PERFORMANT

The core of NumPy is well-optimized C code.
Enjoy the flexibility of Python with the speed of

NUMERICAL COMPUTING TOOLS

NumPy offers comprehensive mathematical
functions, random number generators, linear

algebra routines, Fourier transforms, and more.

EASY TO USE

NumPy’s high level syntax makes it accessible
and productive for programmers from any

INTEROPERABLE

NumPy supports a wide range of hardware and
computing platforms, and plays well with
distributed, GPU, and sparse array libraries.

OPEN SOURCE

Distributed under a liberal BSD license, NumPy
is developed and maintained publicly on GitHub

https://numpy.orag/

https://numpy.org/

g

Download Gallery

Stable (release notes)
0.18.0rc0 - November
2020

® Download

Development
pre-0.19

@® Download

GitHub source & bug reports
Conftribute get involved

Mailing List dev. discussion

Scikit-image

scikit-image

image processing in python

Documentation Community Guidelines () Source Search documentation ...

Image processing in Python

scikit-image is a collection of algorithms for image processing. It is available free of
charge and free of restriction. We pride ourselves on high-quality, peer-reviewed
code, written by an active community of volunteers.

If you find this project useful, please cite: [BiBTeX]

Stéfan van der Walt, Johannes L. Schénberger, Juan Nunez-lglesias, Francois
Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu and the
scikit-image contributors. scikit-image: Image processing in Python. PeerJ 2:e453
(2014) https://doi.org/10.7717/peerj.453

https://scikit-image.org/

https://scikit-image.org/

Example applications with scikit-image

Q scikit-image
y} image processing in python

Installation Gallery Documentation Community) Source

Search documentation ...

General examples

Docs for 0.18.0.dev0 General-purpose and introductory examples for scikit-image.

All versions The narrative documentation introduces conventions and basic image manipulations.

https://scikit-image.org/docs/dev/auto examples/

https://scikit-image.org/docs/dev/auto_examples/

