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Signal processing

• In the physical world, any quantity measurable through 

time or over space can be taken as a signal

• Signals are or electrical representations of time-varying 

or spatial-varying physical quantities

• Signal processing: applying mathematical techniques for 

the extraction, transformation and interpretation of 

signals, in either discrete (digital) or continuous (analog)

time

• Example signals: radio, telephone, radar, sound, images, 

video, sensor data



3

Digital images

• Digital image is a numeric representation of a 

two-dimensional image

• Examples: photos, microscopic, medical, 

astronomical

*Help me find a more 

updated visualization!



Charge Coupled Device (CCD)
Transforming light (photons) to electrical voltage

https://www.nobelprize.org/prizes/physics/2009/prize-announcement/

Popular science (Hebrew): https://davidson.weizmann.ac.il/online/sciencehistory/את-ששינה-החיישן- התמונה

https://www.nobelprize.org/prizes/physics/2009/prize-announcement/
https://davidson.weizmann.ac.il/online/sciencehistory/החיישן-ששינה-את-התמונה


Image representation and processing

• Digital image representation

• Generating synthetic images

• Basics of image processing

• Noise, and local noise reductions

• Image segmentation



Basic model of a digital image
• Pixel: each element M[x, y] of the image



Resolution

Source: wikipedia

• Resolution is the capability of the sensor to observe or measure 

the smallest object clearly with distinct boundaries 

• Resolution depends on the physical size of a pixel 

Higher resolution = more pixels per area = lower pixel size



2D, 2D + time (video), 3D, color

• A 2D image is encoded as a n-by-m matrix M 

• Video – a 3rd "time“ dimension

• 3D image

• Color (e.g., RGB)



Gray scale images

• We discuss gray scale images only (for simplicity)

• Real numbers expressing gray levels have to be 

discretized

• A good quality photograph (human visual inspection) 

has 256 gray-level values (8 bits) per pixel

• The value 0 represents black, 255 represents white

• In some applications (e.g., medical imaging) 4096 

gray levels (12 bits) are used



• Number of bits per pixel.

• A human observer sees at most a few hundreds shades of gray 

• Higher bit depths images: typically for automated analysis by a 

computer 

Image from:

http://micro.magnet.fsu.edu/

Bit Depth

http://micro.magnet.fsu.edu/primer/digitalimaging/digitalimagebasics.html


Image Quantization

Number of bits per pixel

24 bit RGB 16 colors

Note that both images have the same pixel & spatial resolution



• 8 bits per pixel (28=256 gray levels): 0 = black, 255 = white

38,  26,  21, 36,  19,  28,  33, 44, 31, 112, 

77,  83,  34, 168, 159, 48,  50, 14, 55, 211, 

112, 137, 34, 101, 129, 62,  54, 40, 21, 86, 

41,  46,  35, 19,  35,  52,  18, 57, 39, 123, 

38,  16,  38, 67,  45,  21,  29, 59, 10, 130, 

45,  43,  46, 51,  44,  39,  53, 31, 24, 64, 

47,  30,  54, 45,  40,  46,  23, 26, 58, 40, 

71,  57,  66, 63,  70,  84,  65, 62, 91, 49, 

72,  55,  43, 57,  90,  111, 92, 73, 74, 56, 

47,  45,  36, 78,  114, 113, 81, 54, 57, 44

Gray scale image



BW / Grayscale / RGB

• Black & white / gray-level / RGB

256 gray level image

(8 bpp)

"true color" image

(8+8+8 = 24 bpp)

Images from: http://www.csse.uwa.edu.au/~wongt/matlab.html

Black & white

(1 bpp)

Video tutorial on colors here: https://www.youtube.com/watch?v=syJo37AKaro

https://www.youtube.com/watch?v=syJo37AKaro


An image



Our implementation: the class Matrix

• Class Matrix, implemented as a list of lists:



The class Matrix
• Additional methods (we will skip most of these today):

 copy

 Arithmetical operations, e.g., mat1 + mat2

 __getitem__ : receives a tuple (i,j)

 __setitem__ : receives a tuple (i,j) and val

i and j can be both integers or both slices 

 display: shows the image represented by a matrix, uses the 

library matplotlib (remember graph visualization?)

 save and load: enable storing and reading images from files



class Matrix - item access and assignment

>>> m = Matrix(10, 10)  # 10x10 matrix of zeros

>>> m[4,5]              # same as m.__getitem__((4,5))

0

>>> m[4,5] = 45         # same as m.__setitem__((4,5),45)

>>> m[4,5]

45

Note:  the code file contains an additional feature: accessing and 

assignment of a whole slice.

• >>> m[3:5, 4:8]         # here i and j are both slices

<Matrix [[0 , 0, 0, 0], [0, 45, 0, 0]] >



Loading, saving and displaying an image



A few issues to discuss regarding 

image representation

• “Translating” our custom .bitmap format to 
standard image formats in next (hidden) slide 
(which I’ll be skipping today)

• Any suggestions on how to improve the inner 
representation of an image?

• numpy arrays (intro to DS)

• Of course there are existing Python libraries 
with image (and image processing) 
functionalities, e.g., https://scikit-image.org/

https://scikit-image.org/


Generating simple synthetic images



Drawing a black square



Horizontal lines



Functions as arguments



Try generating synthetic images yourself!



Digital Image Processing



Digital image processing

Image processing is any form of signal processing for which 

the input is an image, the output may be either an image or a 

set of characteristics or parameters related to the image 

Source: Wikipedia



• Common problems:

• Noise reduction (denoising) - removing noise from an image.

• Segmentation - partitioning a digital image into segments (e.g., identify the 

boundaries of cells in a multi-cell image)

• Tracking - relate objects in subsequent frames of a film

• Edge detection – detecting discontinuities in the image

• Registration - transforming different images into one coordinate system (e.g., 

minor shifts in the camera position in subsequent frames

• Color correction.

• Typical applications:

• Machine vision

• Medical / biological image analysis

• Face detection

• Object recognition

• Augmented reality

• …

Digital image processing



Blur

An original image (left) and a blurred version thereof (right). Taken from 

Wikipedia.

• Blur and noise are two major effects hampering image accuracy 

• Blur is intrinsic to image acquisition. For example, out of focus 

due to camera motion or due to the optics 

• Take a signal processing course (probably not in ISE) to 

understand more...



Noise and denoising

• The observed value at pixel x, y, M(x, y), equals the sum 

of the true value T(x, y) plus noise N(x, y)

M(x, y) = T(x, y) + N(x, y) 

• Denoising algorithms: given the observed image M, 

produce a new image, ෠𝑇, which should be close to the 

original image T

• This goal is not well defined, and can be solved only 

with putting constraints on the image and on the noise



Assumptions on the images

• We assume the image is piecewise smooth: 

most of the image's area consists of large, 

smooth regions where light intensity varies 

continuously – if x1, y1 and x2, y2 are 

neighbors, then M[x1,y1] and M[x2,y2] attain 

close enough values.



Gaussian noise model

• Gaussian noise model: The noise at pixel x, y, N(x, y), is 

a random variable. 

• Simplest assumption: N(x, y) is "white noise", distributed 

independently of the noise at other pixels.



Normal (Gaussian) distribution

Three Gaussians, with σ = 0.5, 1, 2 (σ = 0:5 is the narrowest).

The probability density function 
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Gaussian, or normal, distribution

with mean 0 and standard deviation σ



68% of the distribution lies within one standard deviation (std) 

of the mean. 95% of the distribution lies within two standard 

deviations of the mean. 99.7% of the distribution lies within 

three standard deviations of the mean. 

http://www.regentsprep.org/regents/math/algtrig/ats2/normallesson.htm

More on normal distributions



Modeling Gaussian noise
• random.gauss(mu, sigma) returns a number distributed according to a 

Gaussian distribution: mean μ and std σ

• We will use μ = 0, and a default value σ = 10. When added to pixel 
values, we will round the noise and make sure the outcome falls 
within 0 to 255.

>>> import random

>>> random.gauss(0,10)

0.36121514047571907

>>> random.gauss(0,10)

21.643048694527852

>>> lst = [round(random.gauss(0,10)) for i in range(20)]

>>> lst

[-8, 22, 12, 4, -1, 2, 11, 6, -16, -1, 4, -9, -3, 1, -5, -

3, 5, 18, 19, 1]

>>> sorted(lst)

[-16, -9, -8, -5, -3, -3, -1, -1, 1, 1, 2, 4, 4, 5, 6, 11, 

12, 18, 19, 22]



Add Gauss noise to image



Examples



Denoising algorithms

We will discuss three approaches to denoising, and 

implement two of them:

• Denoising by Local means

• Denoising by Local Medians

• Denoising by Non local means

Of course, these three approaches are only the tip of the 

iceberg...



Local denoising

• Neighborhood of the pixel x, y is defined as the set of all pixels 

whose coordinates are close to x, y

• A neighborhood commonly considered is the (2k+1)-by-(2k+1) 

square matrix of coordinates centered at x, y, where k is a small 

integer - typically 1 or 2

• Local denoising changes the center pixel according to some 

function of its neighborhood

• Called “convolution”
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Convolution (brief detour)

Source: Wikipedia



Remember the peaks problem?
(1st week)





Quantization
"Quantization is the process of constraining an input from a 

continuous or otherwise large set of values (such as the real 

numbers) to a discrete set (such as the integers)“ (Wikipedia)

Examples:

• Mathematical integration

• Signal processing (e.g., audio/image, time/space/color)





The Peaks Problem

Input: A sequence S of real numbers of 
length n.

Output: All the triples (subsequences of 
size 3) of S such that the 
middle number is the largest of 
the three. 



715962736547444169435529225040

The sliding window mechanism

The computer’s 

“point of view”

715962736547444169435529225040



Moving sliding window from 1D to 2D

Image Processing  &   

Computer Vision 



Image convolution

https://ulhpc-tutorials.readthedocs.io/en/latest/cuda/exercises/convolution/

https://ulhpc-tutorials.readthedocs.io/en/latest/cuda/exercises/convolution/


Example

https://developer.nvidia.com/discover/convolution

https://developer.nvidia.com/discover/convolution


Example application: denoising

Original Result



Example application: edge detection

Original Result



Convolutional Neural Network

https://developer.nvidia.com/discover/convolutional-neural-network

https://developer.nvidia.com/discover/convolutional-neural-network


Back to local denoising

• Neighborhood of the pixel x, y is defined as the set of all pixels 

whose coordinates are close to x, y

• A neighborhood commonly considered is the (2k+1)-by-(2k+1) 

square matrix of coordinates centered at x, y, where k is a small 

integer - typically 1 or 2

• Local denoising changes the center pixel according to some 

function of its neighborhood

• Called “convolution”
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Denoising by local means

• Replace the observed value M(x, y), by the 

average of the observed values in its 

neighborhood

• Make sure not to modify the original matrix of 

observed values



Local denoising: auxiliary code
• items(mat) returns a list whose elements are the matrix elements. 

• local_operator applies op on every pixel (except the boundaries of the 

image: pixels not in the center of a 2k+1 by 2k+1 window are left intact.)



Local means



Local means: a synthetic example



Local means: a synthetic example



Local means: another synthetic example

averaging is highly affected by "outliers"



Denoising by local means: motivation

• If the pixel x, y resides in a smooth portion of the image, then 

averaging will not change it significantly

• Averaging (2k + 1)2 independent random variables with standard 

deviation σ, the standard deviation of the average decreases to 

which equals σ/3 for the N3x3(x, y) neighborhood

• So in smooth areas, averaging preserves the signal component of the 

pixel, yet substantially decreases the noise contribution

2/ (2 1)k 



Local means: weighted variants
• Averaging can be expressed as the matrix Frobenius inner product

- sum of element by element product

• Maintains more of the original signal, with smaller noise reduction

• Put more weight close to the central pixel:
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Denoising by local means: limitations

X Pixel that does not reside in a smooth portion of the image, does 
not preserve the signal  blurred edges

X Sensitivity to spurious extreme values, example: salt & pepper 
noise

• For example, suppose the original area of the image has intensity 

level of 240. Yet in the N3x3(x, y) neighborhood, one pixel, e.g., 

x-1, y-1, is observed as very dark, e.g. intensity level around 20, 

due to noise.

• ෠𝑇(x-1, y-1) will be corrected to 216. Each of the other 8 pixels 

containing x-1, y-1 in their neighborhood, will also exhibit such 

"correction", which is undesirable.



Salt & pepper noise model

Original image                             Salt & pepper noise                        Gaussian noise

Extreme gray levels (white and black) at random and 

independently in a small number of pixels



Implementing salt & pepper noise



Adding S&P noise to an image



Denoising by local medians

• Replace the observed value M(x, y), by the median of 
the observed values in a neighborhood of (x, y).

 The median preserves edges (a big plus).

 The median is not sensitive to spurious extreme 
values, so it withstands salt and pepper noise easily.

X However, the median tends to eliminate small, fine 
features in the image, such as thin contours.

X It also takes more time to compute median than mean. 



Local medians: code

• Median is computed by first sorting the values in the local window, 

and taking the middle element.



Local Medians: A Synthetic Example



Local medians: another synthetic example

The median ignores outliers..



Complexity of local means and local medians

• Suppose the image dimensions are n-by-m.

• The number of windows to process: O(n∙m) (k<< m, n).

• For every window, compute the average or median.

• Number of pixels in a window is (2k + 1)2 = 4k2 + 4k + 1 = 

O(k2). This is the time complexity to compute the average. 

• For the median: sorting  O(k2 log k2) = O(k2 log k) steps. 

Faster median finding exists - linear in k. Computing median can 

therefore be done in O(k2) steps too. 

• All in all, O(k2nm) steps (with better median implementation). 



Putting local means/medians to the test

Let’s test our methods

Try to decide which is better (and when) 



Testing local means/medians with SP noise



Testing local means with SP noise



Testing local medians with SP noise



Testing local means/medians with 

Gaussian noise



Testing local means/medians with 

Gaussian noise



Towards non-local means: regularity in 

natural images
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• Windows centered at p and q are similar, but not to 

the one centered at r.

Gaussian noise                              Local means                           Non-

local means means

• Many natural images have a high degree of redundancy. 

Specifically, this means that for most small windows in the original 

image, the window has many similar windows in the same image.



Denoising by non-local means

• The non-local (NL) means algorithm of (A. Buades, B. Coll, and J. M. Morel, 2005) 
heavily employs the notion of non-local, similar windows. Given a window centered 
at (x, y), we search for all windows in the image that are similar to it.

• In other words, we look for all (x’, y’) such that the "distance“ between the windows 
centered at x, y and x’, y’ is below some fixed threshold h.

• We compute the weighted average value of all those similar center pixels (including 
(x, y) itself), with higher weights assigned to windows that are more similar. The 
corrected value, ෠𝑇(x, y), equals this average.

• The method is called non-local since the windows that effect the corrected value 
෠𝑇(x, y) are not necessarily in close proximity to (x, y).

• Remark: This is a fairly simplified version of NL means. For reasons of efficiency, 
one usually scans only a subset of all possible windows.

86



Edge detection
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• Edge - sharp change in intensity between close pixels

• Usually captures much of the meaningful information in the image

images extracted using Sobel filter from:

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html

http://micro.magnet.fsu.edu/primer/java/digitalimaging/russ/sobelfilter/index.html


Erosion and dilation
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Assume features in the foreground are bright and background is dark.

• Erosion - the removal of pixels from the periphery of features.

• shrinks foreground areas, and holes grow.

• Dilation - the addition of pixels to the periphery of features.

• enlarges foreground areas, and holes shrink.

• Like segmentation, these basic operators are often used to pre-process or post-

process images to facilitate analysis.

ErosionDilationOriginal



Erosion and dilation - example

Erosion Dilation

A microscope slide containing Clostridium botulinum cells and spores. 

Spores appear bright with dark boundaries (the spore coat). Vegetative cells 

were stained to provide contrast, and thus appear dark

Source: Martin, M.D., Phase contrast image of germinating spores of a non-

pathogenic clostridia that grows at low temperatures. 2013.

Binary segmentation 

(th=200)

89



Open CV

Open Source Computer Vision Library

https://opencv.org/

https://opencv.org/


Install



Dilation with Open CV



Output
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Image segmentation

http://www.google.co.il/imgres?imgurl=http://belmadogdas.com/mr_ct_segmentation.jpg&imgrefurl=http://belmadogdas.com/research.html&h=766&w=591&sz=85&tbnid=Mt3T-YLhtebXIM:&tbnh=90&tbnw=69&prev=/search?q=image+segmentation&tbm=isch&tbo=u&zoom=1&q=image+segmentation&docid=pJobuqo1-VXtQM&sa=X&ei=LzYET_qvMJPb8QPghvi6AQ&ved=0CFAQ9QEwBg&dur=521


Segmentation

• Partitioning a digital image into multiple segments. 

• Goal: to simplify the representation for understanding and \ or 

analysis. 

• Used to locate objects and boundaries (lines, curves, etc.). 

Usually, the first step in more complicated procedures: object 

recognition, shape analysis , tracking…

• Examples: locating tumors in medical images; identifying 

objects in satellite images (roads, forests, crops, etc.).

Source:

http://www.sonycsl.co.jp/person/nielsen/applets.html

http://www.csl.sony.co.jp/person/nielsen/SRMb/
http://www.sonycsl.co.jp/person/nielsen/applets.html
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Image Segmentation Algorithms

• Thersholding

• Clustering

• Region growing

• Compression-based methods

• Histogram-based methods

• Model-based methods

• Etc.



Binary segmentation by thresholding
• The simplest segmentation method: apply a threshold to turn a gray-

scale image into a binary image (BW) 

• Assumes the image contains two classes of pixels denoted 

foreground and background, and these two classes have distinct, 

different light intensities: the background is much darker than the 

foreground.

Human HT29 colon-cancer cells

http://www.broadinstitute.org/bbbc/image_sets.html
Binary segmentation, threshold = 40



Implementing threshold-based 

segmentation



Picking a threshold: example

Threshold = 20 Threshold = 40 Threshold = 60

• The key is to select the appropriate threshold

• Which one is the best here? Original

• When the threshold is too low (20 in this case) 

areas in the image where cells are densely 

populated become bulbs.

• When it is too high (60) some cells are lost.



Picking a threshold: another example



Picking a threshold: another example

Threshold = 50 Threshold = 100 Threshold = 150

Original

• We want: white = Einstein, black = background

• When the threshold is too low (50) we cannot 

separate face from background.

• When it is too high (150) some areas are lost (e.g. 

parts of the hair), but still good.

• With 100 – some noise in the background (left)

• How can we pick a good threshold automatically?



Otsu method for threshold calculation

• A good threshold for segmentation:

• minimizes differences within each segment, and

• maximizes differences between segments.

• Otsu’s method finds an optimal threshold for segmentation.

• Uses image histogram: grey level values distribution.

• x-axis – grey values

• y-axis – number of pixels with a particular value



Otsu method for threshold calculation

• Relies on the assumption that the foreground and the background

of the image differ substantially in their brightness. 

• This assumption is not true in many cases.

• However, when this assumption holds, there are expected to be 

two peaks in the gray values of an image’s histogram (bi-modal). 

• In this case the lowest mid-point between these two peaks would 

be a good choice for a threshold.

Foregroun

d peak

Backgroun

d peak

A good 

threshold



Otsu method for threshold calculation

• When the difference between foreground and background are less 

sharp, the peaks may be partly overlapping: 

• When the image is rather uniform, there will be no such two peaks 

at all (in which case Otsu's method will be inapplicable):

A good 

threshold



Otsu's Formula

• Otsu threshold is the one that maximizes the var_between among 

all possible thresholds t.

• What is the effect of the difference between the means?

• What is the effect of the relative sizes of the background and 

foreground?

For every threshold t denote:

back – number of background pixels (<= t)

fore – number of foreground pixels ( > t)

mean_back – mean value of the background pixels

mean_fore – mean value of the foreground pixels

var_between(t) = back * fore * (mean_back - mean_fore)2



Otsu – more formally

Source: Wikipedia

For 2 classes, minimizing the intra-class variance 

is equivalent to maximizing inter-class variance 



>>> im = Matrix.load("./HT29.bitmap")

>>> th = otsu(im)

38

>>> segment(im, th).display()

Otsu's Threshold = 38

Original: Human HT29 

colon-cancer cells

Otsu – example execution



Using Histograms

Good candidates:  45, 110

However, 45 isn’t good …

Histograms do not contain all information..

Threshold = 45

Threshold = 110



Thresholding Abbey Road

Threshold = 50 Threshold = 100 Threshold = 150

Original
• Sometimes Thresholds are bad…

• Here we cannot say that white = people, 

black = background (or the other way around)

• Thresholding is only good for certain types 

of images



• Digital images with high pixel resolution and bit depth take up 

lots of computer memory.

• This motivates the need for compressing images.

• During compression, some of the information in the image may 

be lost, in which case the compression is termed lossy. 

Otherwise, we call it lossless. 

• jpg, tiff, png, bmp, gif etc., differ by the type of compression 

applied to the original image. 

The bmp format is lossless, while the other formats are lossy

(tiff can be both, depending on some parameter settings).

Compression and Image Formats



• jpg format partitions the image into squares of 8-by-8 pixels. 

• Most such squares will exhibit only gradual, moderate changes, especially in 

smooth areas of the image.

The example of jpg

• These gradual changes 

can be well 

approximated by far 

fewer bits than the 

8·8·8 = 512 bits in the 

original representation. 

• A factor of 10 (or even 

more) saving in space 

can be achieved.

Human HT29 colon-cancer cells.

In the compressed image on the right, In the 

blue square all pixels are identical. In the 

green square, pixels only change from top to 

bottom. In the yellow square, pixels change 

in both directions.

 original image            highly compressed version 

   

 

                        

 

 

 

 

 



The example of jpg

Human HT29 colon-cancer cells.

In the compressed image on the right, all the 

pixels in the blue square are identical. In the 

green square, pixels only change from top to 

bottom. In the yellow square, pixels change 

in both directions.



Numpy (intro to DS course)

https://numpy.org/

https://numpy.org/


Scikit-image

https://scikit-image.org/

https://scikit-image.org/


Example applications with scikit-image

https://scikit-image.org/docs/dev/auto_examples/

https://scikit-image.org/docs/dev/auto_examples/

