
Introduction to computer

science in Python

Fall 2021-22

Department of Software and Information

Systems Engineering

Ben-Gurion University of the Negev

Topic 9: Object oriented programming

(OOP)

Object Oriented Programming (OOP)

• How would we implement a software system for

managing students’ grades?

• Store data in global structures and accessed by many

different functions.

Procedural programming

• Up until now, we used functions to

organize our code into modular code

blocks.

Object oriented programming

• In Object Oriented Programming, we model the

entities of the real world using objects.

Object oriented programming

• In Object Oriented Programming, we model the

entities of the real world using objects.

• Objects holds both code (functions) and data for the

entities they represent.

6

Object oriented programming

Wikipedia:

“An object-oriented program may be viewed

as a collection of interacting objects, as

opposed to the conventional model, in which a

program is seen as a list of tasks (subroutines)

to perform.”

Characteristics of the OOP paradigm

Example: an object that represents

a student

Data: Attributes (==Variables/Fields)

Functionality: Methods (==Functions)

Classes are user-defined types

• In OOP, a Class is a piece of code that defines

a new object type.

• A class defines which attributes (fields) will be

allocated in memory for each object (instance) of

the class.

• A class contains the code for the functions (called

methods) of a given object type.

• Classes can viewed as a blueprint for creating

objects.

Classes and objects

• A class defines a new type of which many

objects (instances) can be created.
• Each object may hold different values for the class fields.

Classes as data types

Classes define types that are:

• a composition of other types

• have unique functionality

Every class may contain:

• Attributes (fields)

• Methods

• Constructor (Initialization function)

class

Car

Car

objects

Car example

Attributes 4 wheels, steering wheel, horn, color etc.

• Unique for every car instance

Methods drive, turn left, honk, repaint etc.

Constructor by color, by engine type etc..

http://images.google.com/imgres?imgurl=http://ph.garena.com/forum/attachments/month_0904/20090407_7f8e529eaeb33d4bcde5dJOuBl55TwsF.jpg&imgrefurl=http://ph.garena.com/forum/viewthread.php?tid=368&usg=__oxL1cMIffWPyt3wCugmwpC5dCqA=&h=1100&w=1700&sz=352&hl=iw&start=2&sig2=IbbQ2IaUfDY035kCbiU3Kg&tbnid=CPZCbv5uJHeRgM:&tbnh=97&tbnw=150&prev=/images?q=Lightning+McQueen&gbv=2&hl=iw&sa=G&ei=zoiqStWqCKOmmwPcouCQBQ
http://images.google.com/imgres?imgurl=http://www.moparstyle.com/wiki/images/7/76/CarsTheKing.jpg&imgrefurl=http://www.moparstyle.com/wiki/?title=Superbird&usg=__6ByF8uvFDVB2iE6tdW2neW9sHOg=&h=286&w=450&sz=210&hl=iw&start=2&sig2=mmPpSkMJ1hv5iTWEmLgp1w&tbnid=1fRxXtxEn4HmbM:&tbnh=81&tbnw=127&prev=/images?q=cars+%22The+King%22&gbv=2&hl=iw&sa=G&ei=m4iqSrOMD4ekmwOU0L2rBQ
http://images.google.com/imgres?imgurl=http://www.gubbebil.com/B/sc/Chick%20Hicks.jpg&imgrefurl=http://www.gubbebil.com/B/supercharged.htm&usg=__NgOBzChWz04fm0NkmXsI2Sv_fgs=&h=480&w=640&sz=117&hl=iw&start=2&sig2=qJMkiUB0x7XO2cTaTlYXOg&tbnid=y4B8ryGefmDp0M:&tbnh=103&tbnw=137&prev=/images?q=Chick+Hicks&gbv=2&hl=iw&sa=G&ei=SIiqSpDSMaOmmwPcouCQBQ

Classes in Python

• Class definition looks like this:

class ClassName:

"""documentation string"""

def __init__(self):

constructor

def method_name(self, arg1, arg2):

method code

def method_name(self, arg1, arg2):

method code

...

How to represent a point in 2D?

Alternatives

• Two variables x, y

• Elements in a list / tuple

• A new data type

Creating a new type is a (little) more complicated,

But has advantages (to be apparent soon)

So - How should we represent a point?

Creating a new Point (instantiation)

But where is the Point?

• Currently, blank does not hold any
data, so x does not exist (nor does y)

• We want to be able to initialize and
access x, y via Point instance

Object initialization

• There are two ways to initialize an object:

• Explicitly

• Using a constructor, which is a special method

in charge of initializing the object’s variables

Constructors

• Definition in the class’ code that “produces” instances

• Invoked automatically when an object is created

• Input: whatever is required to produce a new instance

• What would a Point constructor accept as input?

Definition within the class’s scope:

• Always named __init__ : 2 underscores, followed by
‘init’, followed by 2 underscores

Constructors – more technically

Constructors – more technically

• The first parameter is self

• self appears in all non-static* class methods, as
opposed to global functions

• Self is a reference to the current instance of the class.

• When calling the constructor, self is not passed, it is
created automatically

* Static methods will be explained later.

Default constructor

• If a constructor was not implemented for a class, Python
assumes that the class has the default constructor

• The default constructor is an empty constructor (no
arguments, no attribute initialization, no code essentially)

Constructors – more technically

Attributes

• The variable p1 refers to a Point object

• p1.x means “get the value of x from object p1”

p1
x  3.0

y  4.0

Point

Attributes

• No conflict between a variable x and the attribute x

p1
x  3.0

y  4.0

Point

Objects can be passed as arguments to functions:

Objects are mutable:

Instances and functions

Objects can be returned by functions:

Instances and functions

Object oriented programming

Programs are made of

- object definitions

- function definitions

• Most of the computation is in operations on objects

• An object definition corresponds to objects or concepts
in the real world

• The functions that operate on that objects correspond to
the ways real-world objects interact

Methods

Method

a function that is associated with a particular class.

Examples in strings, lists, dictionaries, tuples:

list.append(), str.upper(), dict.items()

Difference between methods and functions:

• Methods are defined inside a class definition

• The syntax for invoking a method is different:

• A method is called through an instance

Methods

class New_Class:

"""documentation string""“

def __init__(self, att1):

self.att1 = att1;

def method_name(self, arg1, arg2):

do_something_with(self.att1)

1. The first argument of each method is self. It’s not passed

as an argument in the call – self is actually the object that

invoked the method.

2. Access the attributes of the class – only with self.

Example: distance between two

points (method)

Python Tutor: https://goo.gl/wHrBLU

https://goo.gl/wHrBLU

Example: distance between two

points (method) - abstraction

Python Tutor: https://goo.gl/wHrBLU

https://goo.gl/wHrBLU

Example: distance between two points

(method vs. function)

…….

Method call

function call

…….

• How would you represent a circle object?

• Attributes:

• center (Point)

• radius (int/float)

• Methods:

Method name description arguments return value

__init__ The constructor Center(Point),

radius(int/float)

-

print_circle Prints circle - -

in_circle Checks if a point is

located inside the

circle

a point object True/False

Composition of other

user defined types

A Circle

A Circle

A circle’s memory view

in_circle method

…..

Python Tutor: https://goo.gl/fCWtim

https://goo.gl/fCWtim

Estimating π with circles and points

(with Monte Carlo simulation)

Estimating π with circles and points

(with Monte Carlo simulation)

Point and circle - recap

A Rectangle (design options)

How would you represent a rectangle?

For simplicity ignore angle, assume the rectangle’s edges
are parallel to the axes.

Several possibilities:

• Two opposing corners

• One corner + width and height

• Center + Width and Height

Rectangle - design

• Attributes:

• width (int/float)

• height (int/float)

• corner (Point)

• Methods

Method name description arguments return value

__init__ The constructor width, height, corner -

print_rec Prints the rectangle - -

get_center Returns the center

of the rectangle

- A Point object that

represents the

center.

A Rectangle - implementation

Find rectangle center

…..

Inflate rectangle

….

Polymorphism

Definition

Objects of various types define a common

interface of operations for users.

Polymorphism

Enables working uniformly with objects of

different types.

Executing the same method on objects of different

types will invoke the right version of the method!

Polymorphism - example

Shapes area

Circle Rectangle

Histogram (polymorphism)

Source: Think Python

This function works for lists, tuples, strings and

dictionaries as long as the elements of iterable can

be used as keys in hist

>>> words = ['spam', 'egg', 'spam', 'bacon', 'spam']

>>> histogram(words)

{'bacon': 1, 'egg': 1, 'spam': 3}

def histogram(iterable):

hist = {}

for elem in iterable:

hist[elem] = hist.get(elem, 0) + 1

return hist

Polymorphism – the Mavs version!

https://www.youtube.com/watch?v=iK0CH3hA0Go

https://www.youtube.com/watch?v=iK0CH3hA0Go

Shallow vs deep copy

Shallow vs deep copy

• It is sometimes required to make copies of objects.

• In simple types this is easy:

• int, float, etc. – atomic value is copied

• string is immutable –a new copy is made

• List is mutable – depends on method of copy

(lst2 = lst1 vs lst2 = lst1[:])

• User defined objects are mutable, and there are

different ways to copy them.

Reminder: identity and equality (is and ==)

is will return True if two variables point to the same object.

== will return True if the objects referred to by the variables are equal

>>> a = [1, 2, 3]

>>> b = a

>>> b is a

True

>>> b == a

True

>>> b = a[:]

>>> b is a

False

>>> b == a

True

1 2 3

a b

1 2 3

Copying objects

• is operator indicates that p1 and p2 are not the same object

• The default behavior of the == operator is the same as the
is operator

This is the programmer’s

responsibility (we’ll see soon)!

Shallow versus deep copy

• copy.copy(obj) makes a copy of obj by copying the value each
attribute of obj to a new object and returning it.

• copy.deepcopy(obj) makes a copy of obj by recursively deep
copying each attribute of obj to a new object and returning it

Python tutor: https://goo.gl/aN43K5

Shallow versus deep copy - memory

p1

c1

c2

c3

https://goo.gl/aN43K5

Recap

• Object oriented programming

• Introduction to object oriented programming

• 2D geometry: Point, Circle, Rectangle

• Constructors, attributes, methods, self, memory view

• Monte Carlo estimation of pi with circles and points

• Polymorphism

• Shallow versus deep copy

OOP class design:
Implementing Rational numbers as

new data types

Rational numbers as “built-in” data

types in Python

• Implementing a new data type

• Usage should feel like native language support

Rational Numbers

• A rational number is a number that can be

expressed as a ratio n/d (n, d integers, d not 0)

• Examples: 1/2, 2/3, 112/239, 2/1

• Not an approximation!

Specification
• print should work smoothly

• Add, subtract, multiply, divide

• Immutable

• It should feel like native language support

Constructing a Rational

• What are the attributes?

• How should a client programmer create a new

Rational object?

• Constructors other then the primary?

• Example: a rational number with a denominator
of 1 (e.g., 5/1  5)

• We would like to enable: Rational(5)

Default arguments to constructor

Default arguments to constructors

Checking preconditions
Ensure the arguments are valid when the object is initialized:

Checking preconditions
Ensure the arguments are valid when the object is initialized:

Throw an exception..
(we’ll learn more about it in recitations)

Printing a Rational

Implementing __repr__

In class Rational:

Using it:

__repr__ method:

returns the official string representation of an object

Implementing __str__

• __str__ method returns a readable string
representation of an object

• __repr__ goal is to be unambiguous

• __str__ goal is to be readable

• The default implementation of __str__ returns
the return value of __repr__

Defining operators
• Why not use natural arithmetic operators?

• Operator precedence will be kept

• All operations are method calls

From the book Programming in Scala

Adding rational numbers

Operator overriding

• By defining some special methods, we can

specify the behavior of operators on user

defined types

• +, -, *, /, <, >, ==, …

Special methods
• Special methods, begin and end with __. These methods are invoked

(called) when specific operators or expressions are used.

• Full list: http://getpython3.com/diveintopython3/special-method-

names.html

You Want… So You Write… And Python Calls…

to initialize an instance of class MyClass x = MyClass() x.__init__()

the “official” representation as a string print(x) x.__repr__()

addition x + y x.__add__(y)

subtraction x - y x.__sub__(y)

multiplication x * y x.__mul__(y)

equality x == y x.__eq__(y)

less than x < y x.__lt__(y)

for collections: to know whether it contains a specific value k in x x.__contains__(k)

for collections: to know the size len(x) x.__len__()

… (many more)

http://getpython3.com/diveintopython3/special-method-names.html

Arithmetic operators overriding

MethodOperator

__add__(self,other)p+q

__neg__(self)-p

__sub__(self,other)p-q

__mul__(self,other)p*q

__truediv__(self,other)p/q

Define __add__ method

a c a*d+c*b
+ =

b d b*d

Immutable!

Other arithmetic operations

implementation

Other arithmetic operations

Arithmetics for mixed types
• Now we can add and multiply rational numbers!

• What about mixed arithmetic: Rational+int or int+Rational?

Arithmetics for mixed types

Let’s try Rational + int first:

• first attempt:

Rational + int => Rational + Rational(int)

Works but not elegant or comfortable:

• Add new methods for mixed addition and

multiplication

• Will work thanks to polymorphism

Arithmetics for mixed types

Intuition: converting int to Rational is a good idea,

we just need to figure out where to perform the

conversion.

Inside __add__ method!

Will this work?

Arithmetics for mixed types

What happened?

Inside __add__ we convert other to Rational – but other is already a Rational.

Invoking Rational constructor with a Rational argument generates an

unexpected object:

Solution: convert only

for other of type int!

Revised __add__
• The built-in function isinstance takes a value and a class

object, and returns True if the value is an instance of the

class (False otherwise)

• We only convert the argument is of type int!

Revised __add__

Will p + 2.1 work?

If we want Rational to be used just like any other

numeric data type in respect to arithmetic operations,

we must implement this behavior for every operator

and every data type that is supported.

Implicit Conversions

• Now lets make int + Rational work:

• When we perform 2 + p, which __add__method invoked?

• 2 + p  2.+(p): (int)  int class contains no __add__

method that takes a Rational argument 

• The problem: int class does not contains an __add__

method that takes a Rational argument 

• We can not change the implementation of int, so we should

revise the class Rational.

• Is there a method that is invoked when Rational is on the

right side of the operator?

__radd__ - right side add

__radd__ is invoked when a Rational object appears

on the right side of the + operator

Rational + int works 

Implementating __radd__

using __add__ is correct

because addition is

commutative: a+b = b+a

Arithmetic with Rational numbers

• We now support both int + Rational and

Rational + int, so we may execute complex

arithmetic operations and use built-in functions:

Comparisons

MethodOperator

__eq__(self,other)>>>x == y

__lt__(self,other)>>>x < y

__le__(self,other)>>>x <= y

__gt__(self,other)>>>x > y

__ge__(self,other)>>>p >= q

What methods are used for comparison?

Comparisons

Equality: Rational and int
r1 = Rational(6,3)

r1==2

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

r1==2

File "D...", line 27, in __eq__

return self.numer == other.numer and self.denom ==

other.denom

AttributeError: 'int' object has no attribute 'n'

This does not surprise us anymore...

Comparisons

Why does max work?

Internal representation

• But 8/6 is equal to 4/3!

• We need to normalize the rational numbers to be able
to compare them properly

• To normalize we divide the numerator and
denominator by their greatest common divisor (gcd)

• gcd(8,6) = 2  (8/2)/(6/2) = 4/3

No need for Rational users to be aware - Encapsulation

The change in the constructor influences more than just comparisons

How can we maintain both the un-normalized representation and the

correct comparison?

Revised Rational

Rational numbers in Python

• Actually, there is a Python implementation of
Rational numbers

• It is called fractions
http://docs.python.org/library/fractions.html

http://docs.python.org/library/fractions.html

Recap

• We implemented a new class that naturally
represents Rational numbers

• Attributes, methods, constructor

• Method overriding

• Encapsulation

• Define operators as method

• Polymorphism

• Automatic type conversion

Different comparison criteria
The most awesome Beatle

Class Beatle

How can we find out who is the most popular

Beatle and who is the most awesome?

Who is the most popular Beatle? The most

awesome?

• Easy! We can add __lt__ implementation
and use max

• Is it good enough?

• No, when we implement __lt__ we commit
to one comparison/order criterion

key argument for max

• max(iterable[, key])

key – an optional argument for max function.
If specified, key is applied on each element
of iterable

max returns the element elem such that
key(elem) is the maximum value among the
other elements in iterable.

key argument for max

key is applied on

each list element

Compare according to different criteria

The most popular Beatle

The most awesome Beatle

Also works for min and sort!

Encapsulation – hiding the

unnecessary

Encapsulation – hiding the unnecessary

Source: https://pythonspot.com/encapsulation/

• Preventing accident erroneous modifications by
restricting access to methods and variables

• Class Car has two methods: drive() and update_software()

• update_software will be implemented as a private method
__update_software(), which is invoked only when a new
car is created, and not from the object directly

https://pythonspot.com/encapsulation/

A private method

Source: https://pythonspot.com/encapsulation/

https://pythonspot.com/encapsulation/

Private methods are not accessible

from the object

Source: https://pythonspot.com/encapsulation/

https://pythonspot.com/encapsulation/

Encapsulation prevents from accessing

accidentally, but not intentionally

Source: https://pythonspot.com/encapsulation/

https://pythonspot.com/encapsulation/

A private field

Source: https://pythonspot.com/encapsulation/

Objects can hold crucial data for your application and you do not

want that data to be changeable from anywhere in the code. Can only

be changed within a class method and not outside of the class.

https://pythonspot.com/encapsulation/

Encapsulation prevents from accessing

accidentally, but not intentionally

Source: https://pythonspot.com/encapsulation/

https://pythonspot.com/encapsulation/

setter - a method that sets the value

of a private variable

Source: https://pythonspot.com/encapsulation/

https://pythonspot.com/encapsulation/

Encapsulating the implementation of a

list-like data structure with a dictionary

SecretList implantation

SecretList implantation

SecretList implentation

Characteristics of the

Object-Oriented Paradigm

Inheritance

Use case: secret agents

We will design and develop a system to manage

information about secret agents over the world

• Classes: types of agents

• Objects/instances: individual agents

Agency requirements I

• An agent:

1. Name

2. Age

3. List of visas to enable travel

4. Current location (HQ as default)

• An agent can:

• travel on assignments to other countries (upon visa)

Class agent: design

• Attributes: name, age, visas list, location

• Default location: headquarters (HQ).

• Constructor: name and age.

• Methods:

1. add_visa(self, country): add country to the list of

visas in case it is not already there.

2. send_to(self, country): check if agent can be sent

to country. If so, change location and return True.

Otherwise, return False.

3. __repr__(self)

Class Agent: implementation

Class Agent – Implementation

(Cont’d)

Using the class Agent

Is that all?

• Create an agent

• Test representation string

• Add visas

• Send between countries

• Send to and from HQ

Sending an agent to HQ is always valid!

Adding return to HQ

Requirements II: Special Agents

• Not all agents are the same

• Some are Special Agents

• Special agents have a rank (attribute)

• Special agents can be promoted (method)

• Regular agents:

• Have no rank

• Cannot be promoted

Solution 1: Dummy Attributes

• Add attribute rank to every Agent

• Assign dummy value (-1) for regular agents

• Verify rank validity before every access to it

For example:

def promote(self):

if self.rank < 0:

raise Exception("...")

self.rank += 1

Dummy Attributes

Pros

• Easy to implement

Cons

• Add code to check validity of rank

• What happens if more attributes are added?

• Bad design

Solution 2: new class, duplicated code

• Create a new class called SpecialAgent

1. Copy all code from Agent Class

2. Then:

• Add rank variable

• Update __repr__ method

• Add promote method

Class SpecialAgent (1)

Special Agent demo

Pros

• Very easy to implement

Cons

• Code duplication is bad!

Bad: code duplication

• SpecialAgent is almost identical to Agent

• Code duplication – very bad practice!

• Bug  multiple bugs

• Change  multiple changes

• Change  potential new bugs

Making changes in duplicated

code: example

• Please change the word “now” to “currently”:
>>> a = Agent(“Sarah", 30)

>>> a

Sarah, 30

[]

Currently in: HQ

change

here

Encapsulation

Implementation details are hidden

Is it sufficient to change Agent class and update

its __repr__ method?

Testing New Agent __repr__

>>> a = Agent(“Sarah", 40)

>>> a

Sarah, 40

[]

Currently in: HQ

What about Special Agents?

>>> sa = SpecialAgent(“Commander Bond", 37, 9)

>>> sa

Commander Bond, 37

[]

Now in: HQ

Level: 9

Wrong!!

Code duplication vs. reuse

• Duplication: hard to maintain

• Fixing bugs: in several places

• Adding new features: in several places

• Code reuse makes software development easier:

• Code is written once

• Bugs are fixed in one place only

• Features are added in one place

• Code is easier to understand

Idea: class containment

• A special agent contains an attribute of type agent

• All operations are done through the agent:

• Implement the same methods in every class

• Extensive code duplication

Special agent is an agent

• A special agent is a type of an agent

• A special agent is-an agent

called: an is-a relationship

• Not all classes relate likewise:

• Point is not a Circle

• a has-a relationship: Circle has-a Point (containment)

• A car is not an agent

Implementation: Class inheritance

we use Inheritance to reflect an is-a relationship

• Abstractly:

• B is-a type of A

• B is a subtype of A

• In program design:

• Class B extends class A

• Class B inherits from class A

• Class A is said to be a base/parent/super class

• Class B is said to be a derived/inherited class

Inheritance: class SpecialAgent

class SpecialAgent(Agent):

pass

Special Agent is a derived class of Agent

Base ClassDerived Class

Code reuse

Before adding new code, all code is inherited:

>>> sa = SpecialAgent(“Sarah", 40)

>>> sa

Sarah, 40

[]

Now in: HQ

Overriding methods

In order to add the rank attribute we redefine the

constructor __init__ in SpecialAgent class:

class SpecialAgent(Agent):

def __init__(self, name, age, rank):

self.name = name

self.age = age

self.visas = []

self.location = "HQ"

self.rank = rank

The new implementation overrides the

constructor in the base class Agent

Code reuse and overriding

Problem: the constructor still duplicates code!

Solution: call the Agent’s constructor, with changes

as required

Special Agent Constructor

class SpecialAgent(Agent):

def __init__(self, name, age, rank):

Agent.__init__(self, name, age)

self.rank = rank Explicit call

to Agent init

SpecialAgent

specific code

Adding functionality

Derived classes can have additional attributes and

methods that base classes do not have.

For example, the SpecialAgent class will have a

method to promote an agent.

Rules for subclass constructor

Do one of the following:

1. Use parent’s constructor

• Don’t write any code

• Parent’s constructor invoked automatically

2. Write a new constructor

• First invoking the parent’s constructor

• Then add fields, changes, etc.

Rules for inherited methods

Always use inherited methods when possible

Call for Agent’s

class methods

Special Agent Demo

Class Diagram

name: string
age: integer

visas: list of string
location: string

Agent

add_visa()

send_to()

rank: integer

SpecialAgent

promote()

Remember Polymorphism?

class Cat:

def talk(self):

return 'Meow!'

class Dog:

def talk(self):

return 'Woof! Woof!'

animals = [Cat(), Dog(), Cat()]

for anim in animals:

print anim.talk()

Polymorphism revisited

• All agents (including special) can be treated

the same way:

Inheritance

Source: https://www.python-course.eu/python3_inheritance.php

https://www.python-course.eu/python3_inheritance.php

More Requirements

• Some agents are Restricted Agents

• Cannot have more than 5 visas

• How should we add this functionality?

Overriding

Overriding can be used also to modify class

behavior completely (rather than just adding)

Overriding: example

Class diagram

name: string
age: integer

visas: list of string
location: string

Agent

add_visa()

send_to()

rank: integer

SpecialAgent

promote()

RestrictedAgent

add_visa() (override)

https://tinyurl.com/yy2vgwgm

https://tinyurl.com/yy2vgwgm

Task force

• Establish a task force of agents

• Several agent types can be in one task force

• All task force agents receive visas together

• All task force agents are sent together

Task force

Special Agent bond

send_to(state)

Special Agent english

send_to(state)

Agent deadpool

send_to(state)

Restr. Agent jason

send_to(state)

Agents polymorphism

Deploy task force

Villains

Pretend to be Agents, without the methods

Can vilans infiltrate the task force?

Can the Joker join the mission?

Pretending to be an Agent, including the methods

Villains – take II

Can Voldemort join a mission?

How to control such cases?

• Python does not offer static typing

• The compiler doesn’t catch villains…

• We have to check types in runtime

• So we can control our program’s execution

• Task Force example:

• Do not allow non-agents to join

isinstance and issubclass

• isinstance checks the type of an instance

• Also succeeds if the instance belongs to a sub-

class (i.e., inherited)

• Accepts an object and a class as arguments

• issubclass checks class inheritance

• Accepts two classes as arguments

isinstance

issubclass

Protecting the task force I

Protecting the task force II

Agents: more requirements

Given an agent, get the list of permitted visas.

That’s easy! Just access the visas attribute!

>>> a = Agent("Josh", 22)

>>> a.visas

[]

Encapsulation violation

• Separate functionality from implementation!

• The user should not be aware of internal

changes of the class implementation.

• Encapsulation

Encapsulation: private attributes
• To hide attributes, use the __prefix:

• For example, let’s make visa and location private

(there would not be two classes Agent and PrivateAgent.

Agent would already use encapsulation.)

Private attributes
• Cannot directly access __visas from outside:

Workaround
• Actually this can be “hacked”:

The right way
• Add a getter Method:

Changing visas externally
• Can change the visas outside the class:

• How to solve this? Copy..

Protecting private data
• Return a copy of the data

• And now:

• Let’s define RestrictedPrivateAgent, inheriting

from PrivateAgent

Inheriting a private class

• Let’s invoke add_visa()

• this methods tries to access self.__visas

Inheriting a private class

• private attributes are not inherited!

• we can still use getters or the workaround:

Inheriting a private class

List comprehension

Given a Task Force, how can we choose a subset

of the agents according to some criteria?

• Lets use list comprehension

• Something like this:

[f(i) for i in lst if condition(i)]

List comprehension

The same as:

Software design

• Design should be:

• Intuitive (It makes sense that it’s like that)

• Efficient (minimal/no code duplication).

• Sometimes, this requires defining classes that

do not represent real life entities

Multiple inheritance
Sometimes we want to combine classes, to get

functionality of both methods

More reading: https://www.programiz.com/python-programming/multiple-inheritance

https://www.programiz.com/python-programming/multiple-inheritance

SuperHero class

Enlisting Superman to our task force
• We can not add Superman to our task force (he is not

an Agent)

• Create a new class: AgentHero

Working with AgentHeroes

• Creating and Printing

• Now Superman can join the team:

The order of base

classes in definition

of derived class

The class object in Python

Source: https://www.programiz.com/python-programming/multiple-inheritance

https://www.programiz.com/python-programming/multiple-inheritance

Literals
Notation for representing fixed values (still OOP)

Source: https://www.codespeedy.com/literals-in-python-with-examples/

https://www.codespeedy.com/literals-in-python-with-examples/

Abstract classes

Abstract class

• A class containing one or more abstract methods.

• Abstract method is a method that is declared but

not implemented.

• We cannot create direct instances of an abstract

class only of its derived classes that implement the

abstract method.

• We will use abstract classes, when two or more

derived classes share the same methods but

different behaviors.

Abstract Base Class (ABC)

https://docs.python.org/3/library/abc.html

• Abstract class must extend ABC

• abstractmethod decorator indicates that a method

is abstract

https://docs.python.org/3/library/abc.html

Abstract class Shape

No instances of an Abstract class

Class Circle

Class Rectangle

Polymorphism

Q: where was the __repr__ implemented?

Overloading and overriding

methods

Overloading vs. overriding

https://pythonspot.com/method-overloading/

https://www.geeksforgeeks.org/difference-between-method-overloading-and-method-

overriding-in-python/

• Overloading: several ways to call a method

• Overriding: implementation in the child class
of a method that is provided by the parent class

https://www.geeksforgeeks.org/difference-between-method-overloading-and-method-overriding-in-python/
https://www.geeksforgeeks.org/difference-between-method-overloading-and-method-overriding-in-python/

